期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Transmission Line Insulator Defect Detection Based on Swin Transformer and Context 被引量:1
1
作者 Yu Xi Ke Zhou +3 位作者 Ling-Wen Meng Bo Chen Hao-Min Chen Jing-Yi Zhang 《Machine Intelligence Research》 EI CSCD 2023年第5期729-740,共12页
Insulators are important components of power transmission lines.Once a failure occurs,it may cause a large-scale blackout and other hidden dangers.Due to the large image size and complex background,detecting small def... Insulators are important components of power transmission lines.Once a failure occurs,it may cause a large-scale blackout and other hidden dangers.Due to the large image size and complex background,detecting small defect objects is a challenge.We make improvements based on the two-stage network Faster R-convolutional neural networks(CNN).First,we use a hierarchical Swin Transformer with shifted windows as the feature extraction network,instead of ResNet,to extract more discriminative features,and then design the deformable receptive field block to encode global and local context information,which is utilized to capture key clues for detecting objects in complex backgrounds.Finally,the filling data augmentation method is proposed for the problem of insufficient defects and more images of insulator defects under different backgrounds are added to the training set to improve the robustness of the model.As a result,the recall increases from 89.5%to 92.1%,and the average precision increases from 81.0%to 87.1%.To further prove the superiority of the proposed algorithm,we also tested the model on the public data set Pascal visual object classes(VOC),which also yields outstanding results. 展开更多
关键词 Insulator defect object detection Swin transformer data augmentation context information
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部