The adsorption of biopesticide avermectins onto activated carbon from ethanol solution with different initial concentrations at 303.15 K was performed. The obtained equilibrium and kinetic data of the adsorption proce...The adsorption of biopesticide avermectins onto activated carbon from ethanol solution with different initial concentrations at 303.15 K was performed. The obtained equilibrium and kinetic data of the adsorption process were assayed to evaluate the adsorption potential of activated carbon for avermectins. The results show that the activated carbon is effective for the adsorption of avermectins. Moreover, the adsorption of avermectins onto activated carbon agrees with Langmuir isotherm model, while pseudo-second-order kinetics model is better fitable for such adsorption process. In addition, activated carbon can efficiently protect adsorbed avermectins from photodegradation.展开更多
基金Projects(2006AA10A203 2007AA021808) supported by the National High-Tech Research and Development Program of China
文摘The adsorption of biopesticide avermectins onto activated carbon from ethanol solution with different initial concentrations at 303.15 K was performed. The obtained equilibrium and kinetic data of the adsorption process were assayed to evaluate the adsorption potential of activated carbon for avermectins. The results show that the activated carbon is effective for the adsorption of avermectins. Moreover, the adsorption of avermectins onto activated carbon agrees with Langmuir isotherm model, while pseudo-second-order kinetics model is better fitable for such adsorption process. In addition, activated carbon can efficiently protect adsorbed avermectins from photodegradation.