期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Boosting oxygen evolution reactivity by modulating electronic structure and honeycomb-like architecture in Ni_(2)P/N,P-codoped carbon hybrids
1
作者 Menglei Yuan Yu Sun +8 位作者 Yong Yang Jingxian Zhang Sobia Dipazir Tongkun Zhao Shuwei Li Yongbing Xie He Zhao Zhanjun Liu Guangjin Zhang 《Green Energy & Environment》 SCIE CSCD 2021年第6期866-874,共9页
Oxygen evolution reaction(OER)as the foremost stumbling block to generate cost-effective clean fuels has received extensive attention in recent years.But,it still maintains the challenge to manipulate the geometric an... Oxygen evolution reaction(OER)as the foremost stumbling block to generate cost-effective clean fuels has received extensive attention in recent years.But,it still maintains the challenge to manipulate the geometric and electronic structure during single reaction process under the same conditions.Herein,we report a simple self-template strategy to generate honeycomb-like Ni_(2)P/N,P-C hybrids with preferred electronic architecture.Experiments coupled with theoretical results revealed that the synthesized catalyst has two characteristics:firstly,the unique honeycomb-like morphology not only enables the fully utilization of catalytic active sites but also optimizes the mass/electron transportation pathway,which favor the diffusion of electrolyte to accessible active sites.Secondly,N,P-C substrate,on the one hand,largely contributes the electronic distribution near Fermi level(E_(F))thus boosting its electrical conductivity.On the other hand,the support effect result in the upshift of d-band center and electropositivity of Ni sites,which attenuates the energy barrier for the adsorption of OH~àand the formation of*OOH.In consequence,the optimized Ni_(2)P/N,P-C catalysts feature high electrocatalytic activity towards OER(a low overpotential of 252 m V to achieve10 m A cm^(-2))and 10 h long-term stability,the outstanding performance is comparable to most of transition metal catalysts.This work gives a innovative tactics for contriving original OER electrocatalysts,inspirng deeper understanding of fabricating catalysts by combining theoretical simulation and experiment design. 展开更多
关键词 Oxygen evolution reaction NI2P Modulating electronic structure Honeycomb-like architecture
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部