The observations of 25-yr long-term experiment in Zhejiang paddy soils showed that the soil organic matter could increase continuously with applying organic manure, and the increase in rate enhanced along with the app...The observations of 25-yr long-term experiment in Zhejiang paddy soils showed that the soil organic matter could increase continuously with applying organic manure, and the increase in rate enhanced along with the application rates of organic manure. By mathematical modeling, the soil organic matter increased by 22 kg when 1 t of fresh FYM was applied. The CO2 emission resulting from the mineralization of soil organic matter increased with the increase in the application rate of the organic manure as well as the increase in the root residues. It is expected that the CO2 emission will be at 10.04-21.61 t ha-1 yr-1 when 16.5-49.5 t ha-1 yr-1 of fresh FYM is applied. The soil organic carbon from mineralization and release of applied organic carbon (fresh FYM and root residues) will affect the CO2 concentration in the atmosphere. So, the higher the application rate of organic manure, the more is the fixed organic carbon. The CO2 fixation will be at 1.885-3.463 t ha-1 yr-1 when 16.5-49.5 t ha-1 yr-1 of fresh FYM is applied. Thus, the CO2 fixation will increase by 46.7 kg by applying 1 t fresh FYM. To apply organic manure continuously in rice fields may reduce the contribution to the increase of CO2 concentration in the atmosphere.展开更多
The methods based on N uptake of aerial-plants, soil organic matter (SOM) dynamics, Jenny's equation, and actual measurement of long-term field experiments in Jiaxing, Quzhou, Huangyan and Hangzhou of Zhejiang Pro...The methods based on N uptake of aerial-plants, soil organic matter (SOM) dynamics, Jenny's equation, and actual measurement of long-term field experiments in Jiaxing, Quzhou, Huangyan and Hangzhou of Zhejiang Province, China were used to determine the organic mineralization rate being helpful in estimating the organic requirement for SOM equilibrium. The results showed that the estimated mineralization ratios of SOM for Jiaxing and Quzhou were, respectively, 0.0404 and 0.0508 based on N uptake of aerial-plants in non-fertilized plots; 0.0405 and 0.012 using SOM dynamics in non-fertilized plots; and 0.0413 and 0.0513 using the actual investigated data and Jenny's equation. With Jenny's equation, soil organic C balance in manure + N-P-K plots was estimated at nearly 28.8 g kg-1 for Jiaxing and 32.4 g kg-1 for Quzhou with predicted SOM linearly related to the actual investigated values (r2 = 0.9640 for Jiaxing and 0.8541 for Quzhou). To maintain the SOM balance in the non-fertilized plots the recommended rate of organic materials was 3 000-6 600 kg ha-1, and the relevant rates of farm yard manure (FYM) in the manure and N-P-K plots were estimated at 3 375 (dry) and 17670 kg ha-1 (wet) for Jiaxing, 1845 (dry) and 6090 kg ha-1 (wet) for Quzhou.展开更多
文摘The observations of 25-yr long-term experiment in Zhejiang paddy soils showed that the soil organic matter could increase continuously with applying organic manure, and the increase in rate enhanced along with the application rates of organic manure. By mathematical modeling, the soil organic matter increased by 22 kg when 1 t of fresh FYM was applied. The CO2 emission resulting from the mineralization of soil organic matter increased with the increase in the application rate of the organic manure as well as the increase in the root residues. It is expected that the CO2 emission will be at 10.04-21.61 t ha-1 yr-1 when 16.5-49.5 t ha-1 yr-1 of fresh FYM is applied. The soil organic carbon from mineralization and release of applied organic carbon (fresh FYM and root residues) will affect the CO2 concentration in the atmosphere. So, the higher the application rate of organic manure, the more is the fixed organic carbon. The CO2 fixation will be at 1.885-3.463 t ha-1 yr-1 when 16.5-49.5 t ha-1 yr-1 of fresh FYM is applied. Thus, the CO2 fixation will increase by 46.7 kg by applying 1 t fresh FYM. To apply organic manure continuously in rice fields may reduce the contribution to the increase of CO2 concentration in the atmosphere.
基金Project supported by the Prophase Special Funds of the National Basic Research Program of China (973 Program) (No.2001CCB00800).
文摘The methods based on N uptake of aerial-plants, soil organic matter (SOM) dynamics, Jenny's equation, and actual measurement of long-term field experiments in Jiaxing, Quzhou, Huangyan and Hangzhou of Zhejiang Province, China were used to determine the organic mineralization rate being helpful in estimating the organic requirement for SOM equilibrium. The results showed that the estimated mineralization ratios of SOM for Jiaxing and Quzhou were, respectively, 0.0404 and 0.0508 based on N uptake of aerial-plants in non-fertilized plots; 0.0405 and 0.012 using SOM dynamics in non-fertilized plots; and 0.0413 and 0.0513 using the actual investigated data and Jenny's equation. With Jenny's equation, soil organic C balance in manure + N-P-K plots was estimated at nearly 28.8 g kg-1 for Jiaxing and 32.4 g kg-1 for Quzhou with predicted SOM linearly related to the actual investigated values (r2 = 0.9640 for Jiaxing and 0.8541 for Quzhou). To maintain the SOM balance in the non-fertilized plots the recommended rate of organic materials was 3 000-6 600 kg ha-1, and the relevant rates of farm yard manure (FYM) in the manure and N-P-K plots were estimated at 3 375 (dry) and 17670 kg ha-1 (wet) for Jiaxing, 1845 (dry) and 6090 kg ha-1 (wet) for Quzhou.