期刊文献+
共找到178篇文章
< 1 2 9 >
每页显示 20 50 100
Photophysics of metal-organic frameworks:A brief overview
1
作者 刘晴硕 余俊宏 胡建波 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期122-133,共12页
Metal-organic frameworks(MOFs),which are self-assembled porous coordination materials,have garnered considerable attention in the fields of optoelectronics,photovoltaic,photochemistry,and photocatalysis due to their d... Metal-organic frameworks(MOFs),which are self-assembled porous coordination materials,have garnered considerable attention in the fields of optoelectronics,photovoltaic,photochemistry,and photocatalysis due to their diverse structures and excellent tunability.However,the performance of MOF-based optoelectronic applications currently falls short of the industry benchmark.To enhance the performance of MOF materials,it is imperative to undertake comprehensive investigations aimed at gaining a deeper understanding of photophysics and sequentially optimizing properties related to photocarrier transport,recombination,interaction,and transfer.By utilizing femtosecond laser pulses to excite MOFs,time-resolved optical spectroscopy offers a means to observe and characterize these ultrafast microscopic processes.This approach adds the time coordinate as a novel dimension for comprehending the interaction between light and MOFs.Accordingly,this review provides a comprehensive overview of the recent advancements in the photophysics of MOFs and additionally outlines potential avenues for exploring the time domain in the investigation of MOFs. 展开更多
关键词 metal-organic framework(MOF) ultrafast spectroscopy PHOTOPHYSICS carrier dynamics
下载PDF
High photoelectric conversion efficiency and fast relaxation time of FA_(0.4)MA_(0.6)PbI_(3) applied in ultrafast modulation of terahertz waves 被引量:2
2
作者 Zhibo Xu Ying Zeng +5 位作者 Xinran Zhao Xiaoyin Chen Aoyu Fan Furi Ling Jiang Li Jianquan Yao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期299-305,共7页
Active control of terahertz(THz)waves is attracting tremendous attentions in terahertz communications and active photonic devices.Perovskite,due to its excellent photoelectric conversion performance and simple manufac... Active control of terahertz(THz)waves is attracting tremendous attentions in terahertz communications and active photonic devices.Perovskite,due to its excellent photoelectric conversion performance and simple manufacturing process,has emerged as a promising candidate for optoelectronic applications.However,the exploration of perovskites in optically controlled THz modulators is still limited.In this work,the photoelectric properties and carrier dynamics of FA_(0.4)MA_(0.6)PbI_(3)perovskite films were investigated by optical pumped terahertz probe(OPTP)system.The ultrafast carrier dynamics reveal that FA_(0.4)MA_(0.6)PbI_(3)thin film exhibits rapid switching and relaxation time within picosecond level,suggesting that FA_(0.4)MA_(0.6)PbI_(3)is an ideal candidate for active THz devices with ultrafast response.Furthermore,as a proof of concept,a FA_(0.4)MA_(0.6)PbI_(3)-based metadevice with integrating plasma-induced transparency(PIT)effect was fabricated to achieve ultrafast modulation of THz wave.The experimental results demonstrated that the switching time of FA_(0.4)MA_(0.6)PbI_(3)-based THz modulator is near to 3.5 ps,and the threshold of optical pump is as low as 12.7μJ cm^(-2).The simulation results attribute the mechanism of ultrafast THz modulation to photo-induced free carriers in the FA_(0.4)MA_(0.6)PbI_(3)layer,which progressively shorten the capacitive gap of PIT resonator.This study not only illuminates the potential of FA_(0.4)MA_(0.6)PbI_(3)in THz modulation,but also contributes to the field of ultrafast photonic devices. 展开更多
关键词 Terahertz modulation Perovskites METAMATERIALS Plasmon-induced transparency
下载PDF
Benchmark experiment on slab^(238)U with D-T neutrons for validation of evaluated nuclear data 被引量:1
3
作者 Yan-Yan Ding Yang-Bo Nie +9 位作者 Yue Zhang Zhi-Jie Hu Qi Zhao Huan-Yu Zhang Kuo-Zhi Xu Shi-Yu Zhang Xin-Yi Pan Chang-Lin Lan Jie Ren Xi-Chao Ruan 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第2期145-159,共15页
A benchmark experiment on^(238)U slab samples was conducted using a deuterium-tritium neutron source at the China Institute of Atomic Energy.The leakage neutron spectra within energy levels of 0.8-16 MeV at 60°an... A benchmark experiment on^(238)U slab samples was conducted using a deuterium-tritium neutron source at the China Institute of Atomic Energy.The leakage neutron spectra within energy levels of 0.8-16 MeV at 60°and 120°were measured using the time-of-flight method.The samples were prepared as rectangular slabs with a 30 cm square base and thicknesses of 3,6,and 9 cm.The leakage neutron spectra were also calculated using the MCNP-4C program based on the latest evaluated files of^(238)U evaluated neutron data from CENDL-3.2,ENDF/B-Ⅷ.0,JENDL-5.0,and JEFF-3.3.Based on the comparison,the deficiencies and improvements in^(238)U evaluated nuclear data were analyzed.The results showed the following.(1)The calculated results for CENDL-3.2 significantly overestimated the measurements in the energy interval of elastic scattering at 60°and 120°.(2)The calculated results of CENDL-3.2 overestimated the measurements in the energy interval of inelastic scattering at 120°.(3)The calculated results for CENDL-3.2 significantly overestimated the measurements in the 3-8.5 MeV energy interval at 60°and 120°.(4)The calculated results with JENDL-5.0 were generally consistent with the measurement results. 展开更多
关键词 Leakage neutron spectra URANIUM D-T neutron source Evaluated nuclear data
下载PDF
On the thermodynamics of plasticity during quasi-isentropic compression of metallic glass 被引量:1
4
作者 Kaiguo Chen Bo Chen +7 位作者 Yinan Cui Yuying Yu Jidong Yu Huayun Geng Dongdong Kang Jianhua Wu Yao Shen Jiayu Dai 《Matter and Radiation at Extremes》 SCIE EI CSCD 2024年第2期74-89,共16页
Entropy production in quasi-isentropic compression (QIC) is critically important for understanding the properties of materials under extremeconditions. However, the origin and accurate quantification of entropy in thi... Entropy production in quasi-isentropic compression (QIC) is critically important for understanding the properties of materials under extremeconditions. However, the origin and accurate quantification of entropy in this situation remain long-standing challenges. In this work, a framework is established for the quantification of entropy production and partition, and their relation to microstructural change in QIC. Cu50Zr50is taken as a model material, and its compression is simulated by molecular dynamics. On the basis of atomistic simulation-informed physicalproperties and free energy, the thermodynamic path is recovered, and the entropy production and its relation to microstructural change aresuccessfully quantified by the proposed framework. Contrary to intuition, entropy production during QIC of metallic glasses is relativelyinsensitive to the strain rate ˙γ when ˙γ ranges from 7.5 × 10^(8) to 2 × 10^(9)/s, which are values reachable in QIC experiments, with a magnitudeof the order of 10^(−2)kB/atom per GPa. However, when ˙γ is extremely high (>2 × 10^(9)/s), a notable increase in entropy production rate with˙γ is observed. The Taylor–Quinney factor is found to vary with strain but not with strain rate in the simulated regime. It is demonstrated thatentropy production is dominated by the configurational part, compared with the vibrational part. In the rate-insensitive regime, the increase inconfigurational entropy exhibits a linear relation to the Shannon-entropic quantification of microstructural change, and a stretched exponential relation to the Taylor–Quinney factor. The quantification of entropy is expected to provide thermodynamic insights into the fundamentalrelation between microstructure evolution and plastic dissipation. 展开更多
关键词 ENTROPY METALLIC REGIME
下载PDF
Optical design of the time-resolved ARPES beamline of the new material spectroscopy experimental station for the update of CAEP THz-FEL facility
5
作者 Liang-Liang Du Li-Min Meng +1 位作者 Jiang Li Li-Guo Zhu 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第11期70-74,共5页
The Chinese Academy of Engineering Physics Terahertz Free Electron Laser Facility(CAEP THz FEL,CTFEL)is the only high-average power free electron laser terahertz source based on superconducting accelerators in China.T... The Chinese Academy of Engineering Physics Terahertz Free Electron Laser Facility(CAEP THz FEL,CTFEL)is the only high-average power free electron laser terahertz source based on superconducting accelerators in China.The update of the CTFEL is now undergoing and will expand the frequency range from 0.1–4.2 THz to 0.1–125 THz.Two experimental stations for material spectroscopy and biomedicine will be built.A high harmonic generation(HHG)lightsource based beamline at the material spectroscopy experimental station for time-resolved angle-resolved photoemission spectroscopy(ARPES)research will be constructed and the optical design is presented.The HHG lightsource covers the extreme ultraviolet(XUV)photon energy range of 20–50 eV.A Czerny–Turner monochromator with two plane gratings worked in conical diffraction configuration is employed to maintain the transmission efficiency and preserve the pulse time duration.The calculated beamline transmission efficiency is better than 5%in the whole photon energy range.To our knowledge,this is the first time in China to combine THz-infrared FEL with HHG light source,and this experimental station will be a powerful and effective instrument that will give new research opportunities in the future for users doing research on the dynamic evolution of the excited electron band structure of a material’s surface. 展开更多
关键词 high harmonic generation(HHG) femtosecond extreme ultraviolet pulse conical diffraction grating monochromator transient spectral experiment
下载PDF
Enhanced soft magnetic properties of SiO_(2)-coated FeSiCr magnetic powder cores by particle size effect
6
作者 Mingyue Ge Likang Xiao +6 位作者 Xiaoru Liu Lin Pan Zhangyang Zhou Jianghe Lan Zhengwei Xiong Jichuan Wu Zhipeng Gao 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第10期405-412,共8页
It has been known that metal FeSiCr powders with large average particle sizes have been typically employed to prepare magnetic powder cores(SMCs),with few studies reported on the influence of magnetic properties for o... It has been known that metal FeSiCr powders with large average particle sizes have been typically employed to prepare magnetic powder cores(SMCs),with few studies reported on the influence of magnetic properties for original powders with various average particle sizes less than 10m.In this work,SiO_(2)-coated FeSiCr SMCs with different small particle sizes were synthesized using the sol-gel process.The contribution of SiO_(2)coating amount and voids to the soft magnetic properties was elaborated.The mechanism was revealed such that smaller particle sizes with less voids could be beneficial for reducing core loss in the SMCs.By optimizing the core structure,permeability and magnetic loss of 26 and 262 kW/cm^(3)at 100 kHz and 50 mT were achieved at a particle size of 4.8m and ethyl orthosilicate addition of 0.1 mL/g.The best DC stacking performance,reaching 87%,was observed at an ethyl orthosilicate addition rate of 0.25 mL/g under 100 Oe.Compared to other soft magnetic composites(SMCs),the FeSiCr/SiO_(2)SMCs exhibit significantly reduced magnetic loss.It further reduces the magnetic loss of the powder core,providing a new strategy for applications of SMCs at high frequencies. 展开更多
关键词 FeSiCr SiO_(2) size effect magnetic properties DC superposition
下载PDF
Study on damage mechanism and damage distribution of the rear plate under impact of debris cloud
7
作者 Chenyang Wu Xiaowei Chen Qiguang He 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第5期151-167,共17页
The debris cloud generated by the hypervelocity impact(HVI)of orbiting space debris directly threatens the spacecraft.A full understanding of the damage mechanism of rear plate is useful for the optimal design of prot... The debris cloud generated by the hypervelocity impact(HVI)of orbiting space debris directly threatens the spacecraft.A full understanding of the damage mechanism of rear plate is useful for the optimal design of protective structures.In this study,the hypervelocity yaw impact of a cylindrical aluminum projectile on a double-layer aluminum plate is simulated by the FE-SPH adaptive method,and the damage process of the rear plate under the impact of the debris cloud is analyzed based on the debris cloud structure.The damage process can be divided into the main impact stage of the debris cloud and the structural response of the rear plate.The main impact stage lasts a short time and is the basis of the rear plate damage.In the stage of structure response,the continuous deformation and inertial motion of the rear plate dominate the perforation of the rear plate.We further analyze the damage mechanism and damage distribution characteristics of the rear plate in detail.Moreover,the connection between velocity space and position space of the debris cloud is established,which promotes the general analysis of the damage law of debris cloud.Based on the relationship,the features of typical damage areas are identified by the localized fine analysis.Both the cumulative effect and structural response cause the perforation of rear plate;in the non-perforated area,cratering by the impact of hazardous fragments is the main damage mode of the rear plate. 展开更多
关键词 Damage of rear plate Debris cloud Secondary impact Hypervelocity yaw impact FE-SPH adaptive method
下载PDF
First-principles study of structural and electronic properties of multiferroic oxide Mn_(3)TeO_(6) under high pressure
8
作者 潘小龙 王豪 +2 位作者 柳雷 陈向荣 耿华运 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第7期448-454,共7页
Mn_(3)TeO_(6)(MTO) has been experimentally found to adopt a P2_(1)/In structure under high pressure,which exhibits a significantly smaller band gap compared to the atmospheric R3 phase.In this study,we systematically ... Mn_(3)TeO_(6)(MTO) has been experimentally found to adopt a P2_(1)/In structure under high pressure,which exhibits a significantly smaller band gap compared to the atmospheric R3 phase.In this study,we systematically investigate the magnetism,structural phase transition,and electronic properties of MTO under high pressure through first-principles calculations.Both R3 and P2_(1)/n phases of MTO are antiferromagnetic at zero temperature.The R3 phase transforms to the P2_(1)/n phase at 7.5 8 GPa,accompanied by a considerable volume collapse of about 6.47%.Employing the accurate method that combines DFT+U/and GW,the calculated band gap of R3 phase at zero pressure is very close to the experimental values,while that of the P2_(1)/n phase is significantly overestimated.The main reason for this difference is that the experimental study incorrectly used the Kubelka-Munk plot for the indirect band gap to obtain the band gap of the P2_(1)/n phase instead of the Kubelka-Munk plot for the direct band gap.Furthermore,our study reveals that the transition from the R3 phase to the P2_(1)/n phase is accompanied by a slight reduction in the band gap. 展开更多
关键词 MAGNETISM phase transition band gap high pressure
下载PDF
In situ observation of the phase transformation kinetics of bismuth during shock release
9
作者 李江涛 王倩男 +7 位作者 徐亮 柳雷 张航 Sota Takagi Kouhei Ichiyanagi Ryo Fukaya Shunsuke Nozawa 胡建波 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期586-592,共7页
A time-resolved x-ray diffraction technique is employed to monitor the structural transformation of laser-shocked bismuth.Results reveal a retarded transformation from the shock-induced Bi-Ⅴphase to a metastable Bi-... A time-resolved x-ray diffraction technique is employed to monitor the structural transformation of laser-shocked bismuth.Results reveal a retarded transformation from the shock-induced Bi-Ⅴphase to a metastable Bi-Ⅳphase during the shock release,instead of the thermodynamically stable Bi-Ⅲphase.The emergence of the metastable Bi-Ⅳphase is understood by the competitive interplay between two transformation pathways towards the Bi-Ⅳand Bi-Ⅲ,respectively.The former is more rapid than the latter because the Bi-Ⅴto B-Ⅳtransformation is driven by interaction between the closest atoms while the Bi-Ⅴto B-Ⅲtransformation requires interaction between the second-closest atoms.The nucleation time for the Bi-Ⅴto Bi-Ⅳtransformation is determined to be 5.1±0.9 ns according to a classical nucleation model.This observation demonstrates the importance of the formation of the transient metastable phases,which can change the phase transformation pathway in a dynamic process. 展开更多
关键词 phase transformation time-resolved x-ray diffraction(XRD) BISMUTH metastable phase nonequilibrium phase diagram
下载PDF
Direct visualization of laser-driven dynamic fragmentation in tin by in situ x-ray diffraction
10
作者 Jing Yang Xinxin Wang +9 位作者 Liang Xu Qiannan Wang Yi Sun Jiangtao Li Lin Zhang Yinghua Li Yuying Yu Pei Wang Qiang Wu Jianbo Hu 《Matter and Radiation at Extremes》 SCIE EI CSCD 2024年第5期109-114,共6页
We present a novel method for investigating laser-driven dynamic fragmentation in tin using in situ X-ray diffraction.Our experimental results demonstrate the feasibility of the method for simultaneously identifying t... We present a novel method for investigating laser-driven dynamic fragmentation in tin using in situ X-ray diffraction.Our experimental results demonstrate the feasibility of the method for simultaneously identifying the phase and temperature of fragments through analysis of the diffraction pattern.Surprisingly,we observe a deviation from the widely accepted isentropic release assumption,with the temperature of the fragments being found to be more than 100 K higher than expected,owing to the release of plastic work during dynamic fragmentation.Our findings are further verified through extensive large-scale molecular dynamics simulations,in which strain energies are found to be transferred into thermal energies during the nucleation and growth of voids,leading to an increase in temperature.Our findings thus provide crucial insights into the impact-driven dynamic fragmentation phenomenon and reveal the significant influence of plastic work on material response during shock release. 展开更多
关键词 DYNAMIC RELEASE DIFFRACTION
下载PDF
Mechanical responses and crystal plasticity model of CoCrNi medium-entropy alloy under ramp wave compression
11
作者 Jinlei Dong Xuping Zhang +6 位作者 Guiji Wang Xianqian Wu Binqiang Luo Xuemiao Chen Fuli Tan Jianheng Zhao Chengwei Sun 《Matter and Radiation at Extremes》 SCIE EI CSCD 2024年第5期93-108,共16页
It is of substantial scientific significance and practical value to reveal and understand the multiscale mechanical properties and intrinsic mechanisms of medium-entropy alloys(MEAs)under high strain rates and pressur... It is of substantial scientific significance and practical value to reveal and understand the multiscale mechanical properties and intrinsic mechanisms of medium-entropy alloys(MEAs)under high strain rates and pressures.In this study,the mechanical responses and deformation mechanisms of an equiatomic CoCrNi MEA are investigated utilizing magnetically driven ramp wave compression(RWC)with a strain rate of 105 s^(−1).The CoCrNi MEA demonstrates excellent dynamic mechanical responses and yield strength under RWC compared with other advanced materials.Multiscale characterizations reveal that grain refinement and abundant micromechanisms,including dislocation slip,stacking faults,nanotwin network,and Lomer–Cottrell locks,collectively contribute to its excellent performance during RWC.Furthermore,dense deformation twins and shear bands intersect,forming a weave-like microstructure that can disperse deformation and enhance plasticity.On the basis of these observations,we develop a modified crystal plasticity model with coupled dislocation and twinning mechanisms,providing a relatively accurate quantitative description of the multiscale behavior under RWC.The results of simulations indicate that the activation of multilevel microstructures in CoCrNi MEA is primarily attributable to stress inhomogeneities and localized strain during RWC.Our research offers valuable insights into the dynamic mechanical responses of CoCrNi MEA,positioning it as a promising material for use under extreme dynamic conditions. 展开更多
关键词 DEFORMATION ALLOY MICROSTRUCTURE
下载PDF
From concept to reality-A review to the primary test stand and its preliminary application in high energy density physics 被引量:21
12
作者 Jianjun Deng Weiping Xie +28 位作者 Shuping Feng Meng Wang Hongtao Li Shengyi Song Minghe Xia Ji Ce An He Qing Tian Yuanchao Gu Yongchao Guan Bin Wei Xianbin Huang Xiaodong Ren Jiakun Dan Jing Li Shaotong Zhou Hongchun Cai Siqun Zhang Kunlun Wang Qiang Xu Yujuan Wang Zhaohui Zhang Guilin Wang Shuai Guo Yi He Yiwei Zhou Zhanji Zhang Libing Yang Wenkang Zou 《Matter and Radiation at Extremes》 SCIE EI CAS 2016年第1期48-58,共11页
Pulsed power technology,whereas the electrical energy stored in a relative long period is released in much shorter timescale,is an efficient method to create high energy density physics(HEDP)conditions in laboratory.A... Pulsed power technology,whereas the electrical energy stored in a relative long period is released in much shorter timescale,is an efficient method to create high energy density physics(HEDP)conditions in laboratory.Around the beginning of this century,China Academy of Engineering Physics(CAEP)began to build some experimental facilities for HEDP investigations,among which the Primary Test Stand(PTS),a multi-module pulsed power facility with a nominal current of 10 MA and a current rising time~90 ns,is an important achievement on the roadmap of the electro-magnetically driven inertial confinement fusion(ICF)researches.PTS is the first pulsed power facility beyond 10 TW in China.Therefore,all the technologies have to be demonstrated,and all the engineering issues have to be overcome.In this article,the research outline,key technologies and the preliminary HEDP experiments are reviewed.Prospects on HEDP research on PTS and pulsed power development for the next step are also discussed. 展开更多
关键词 High energy density physics Inertial confinement fusion Z-PINCH Isentropic compression Hypervelocity flyer launch Pulsed power Primary Test Stand
下载PDF
The numerical study of shock-induced hydrodynamic instability and mixing 被引量:10
13
作者 王涛 柏劲松 +1 位作者 李平 钟敏 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第3期1127-1135,共9页
Based on multi-fluid volume fraction and piecewise parabolic method (PPM), a multi-viscosity-fluid hydrodynamic code MVPPM (Multi-Viscosity-Fluid Piecewise Parabolic Method) is developed and applied to the problem... Based on multi-fluid volume fraction and piecewise parabolic method (PPM), a multi-viscosity-fluid hydrodynamic code MVPPM (Multi-Viscosity-Fluid Piecewise Parabolic Method) is developed and applied to the problems of shock-induced hydrodynamic interfacial instability and mixing. Simulations of gas/liquid interface instability show that the influences of initial perturbations on the fluid mixing zone (FMZ) growth are significant, especially at the late stages, while grids have only a slight effect on the FMZ width, when the interface is impulsively accelerated by a shock wave passing through it. A numerical study of the hydrodynamic interfacial instability and mixing of gaseous flows impacted by re-shocks is presented. It reveals that the numerical results are in good agreement with the experimental results and the mixing growth rate strongly depends on initial conditions. Ultimately, the jelly layer experiment relevant to the instability impacted by exploding is simulated. The shape of jelly interface, position of front face of jelly layer, crest and trough of perturbation versus time are given; their simulated results are in good agreement with experimental results. 展开更多
关键词 interfacial instability MIXING multi-fluid hydrodynamic volume fraction
下载PDF
Phase transition and dynamics of iron under ramp wave compression 被引量:4
14
作者 T.Chong Z.P.Tang +2 位作者 F.L.Tan G.J.Wang J.H.Zhao 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2018年第5期902-909,共8页
The ramp wave compression experiments of iron with different thicknesses were performed on the magnetically driven ramp loading device CQ-4.Numerical simulations of this process were done with Hayes multi-phase equati... The ramp wave compression experiments of iron with different thicknesses were performed on the magnetically driven ramp loading device CQ-4.Numerical simulations of this process were done with Hayes multi-phase equation of state (H-MEOS) and dynamic equations of phase transition.The calculated results of H-MEOS are in good agreement with those of shock phase transition,but are different from those under ramp wave compression.The reason for this is that the bulk modulus of the material in the Hayes model and the wave velocity are considered constant.Shock compression is a jump from the initial state to the final state,and the sound speed is related to the slope of the Rayleigh line.However,ramp compression is a continuous process,and the bulk modulus is no longer a constant but a function of pressure and temperature.Based on Mumaghan equation of state,the first-order correction of the bulk modulus on pressure in the Hayes model was carried out.The numerical results of the corrected H-MEOS agree well with those of pure iron in both ramp and shock compression phase transition experiments.The calculated results show that the relaxation time of iron is about 30 ns and the phase transition pressure is about 13 GPa.There are obvious differences between the isentropic and adiabatic process in terms of pressure-specific volume and temperature-pressure.The fluctuation of the sound speed after 13 GPa is caused by the phase transition. 展开更多
关键词 RAMP wave compression POLYMORPHIC phase transition MULTIPHASE equation of state SOUND speed
下载PDF
Strain-rate effect on initial crush stress of irregular honeycomb under dynamic loading and its deformation mechanism 被引量:4
15
作者 Peng Wang Zhijun Zheng +1 位作者 Shenfei Liao Jilin Yu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2018年第1期117-129,共13页
The seemingly contradictory understandings of the initial crush stress of cellular materials under dynamic loadings exist in the literature, and a comprehensive analysis of this issue is carried out with using direct ... The seemingly contradictory understandings of the initial crush stress of cellular materials under dynamic loadings exist in the literature, and a comprehensive analysis of this issue is carried out with using direct information of local stress and strain. Local stress/strain calculation methods are applied to determine the initial crush stresses and the strain rates at initial crush from a cell-based finite element model of irregular honeycomb under dynamic loadings. The initial crush stress under constant-velocity compression is identical to the quasi-static one, but less than the one under direct impact, i.e. the initial crush stresses under different dynamic loadings could be very different even though there is no strain-rate effect of matrix material. A power-law relation between the initial crush stress and the strain rate is explored to describe the strain-rate effect on the initial crush stress of irregular honeycomb when the local strain rate exceeds a critical value, below which there is no strain-rate effect of irregular honeycomb. Deformation mechanisms of the initial crush behavior under dynamic loadings are also explored.The deformation modes of the initial crush region in the front of plastic compaction wave are different under different dynamic loadings. 展开更多
关键词 Cellular material Constant-velocity compression Direct impact Cross-sectional stress Initial crush stress Strain rate effect
下载PDF
Influence of Hot-Carriers on the On-State Resistance in Si and GaAs Photoconductive Semiconductor Switches Working at Long Pulse Width 被引量:5
16
作者 Chong-Biao Luan Hong-Tao Li 《Chinese Physics Letters》 SCIE CAS CSCD 2020年第4期49-52,共4页
We demonstrate that the transport of hot carriers may result in the phenomenon where an oscillated output current appears at the waveforms in a high-power photoconductive semiconductor switch(PCSS) working at long pul... We demonstrate that the transport of hot carriers may result in the phenomenon where an oscillated output current appears at the waveforms in a high-power photoconductive semiconductor switch(PCSS) working at long pulse width when the laser disappears or the electric field changes. The variational laser and electric field will affect the scattering rates of hot carriers and crystal lattice in high-power PCSS, and the drift velocity of hot carriers and also the on-state resistance will be changed. The present result is important for reducing the on-state resistance and improving the output characteristics of high-power Si/Ga As PCSS. 展开更多
关键词 SCATTERING CONDUCTIVE RESISTANCE
下载PDF
Experimental and numerical investigation of inclined air/SF_6 interface instability under shock wave 被引量:3
17
作者 Tao WANG Jin-hong LIU +3 位作者 Jing-song BAI Yang JIANG Ping LI Kun LIU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2012年第1期37-50,共14页
The shock tube experiments of inclined air/SF6 interface instability under the shock wave with the Mach numbers 1.23 and 1.41 are conducted. The numerical simulation is done with the parallel algorithm and the multi-v... The shock tube experiments of inclined air/SF6 interface instability under the shock wave with the Mach numbers 1.23 and 1.41 are conducted. The numerical simulation is done with the parallel algorithm and the multi-viscous-fluid and turbulence (MVFT) code of the large-eddy simulation (LES). The developing process of the interface accelerated by the shock wave is reproduced by the simulations. The complex wave structures, e.g., the propagation, refraction, and reflection of the shock wave, are clearly revealed in the flows. The simulated evolving images of the interface are consistent with the experimental ones. The simulated width of the turbulent mixing zone (TMZ) and the displacements of the bubble and the spike also agree well with the experimental data. Also, the reliability and effectiveness of the MVFT in simulating the problem of interface instability are validated. The more energies are injected into the TMZ when the shock wave has a larger Mach number. Therefore, the perturbed interface develops faster. 展开更多
关键词 interface instability multi-viscous-fluid and turbulence (MVFT) largeeddy simulation (LES) turbulent mixing zone (TMZ) VALIDATION
下载PDF
Effect of strain rate on microstructural evolution and thermal stability of 1050 commercial pure aluminum 被引量:4
18
作者 Yang YANG Jun-liang WANG +1 位作者 Ya-dong CHEN Hai-bo HU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第1期1-8,共8页
Effects of strain rate on the microstructure evolution and thermal stability of1050commercial pure aluminum processed by means of split Hopkinson pressure bar(SHPB)and Instron?3369mechanical testing machine were inves... Effects of strain rate on the microstructure evolution and thermal stability of1050commercial pure aluminum processed by means of split Hopkinson pressure bar(SHPB)and Instron?3369mechanical testing machine were investigated.Samples in the deformed state and after various annealing treatments at423?523K(150?250°C)for1h were characterized by TEM and hardness test.The result reveals that the samples in the deformed state were mainly composed of elongated subgrains/cells with high density of dislocations.Microstructures of the quasi-static compressed aluminum were quite stable throughout the temperature range studied,and no significant grain growth was observed.However,for the dynamic impacted one,recrystallized grains with an average grain size of4.7μm were evolved after annealing at523K(250°C)for1h.It is suggested that the annealing behavior of this dynamic deformed aluminum is a continuous process of grain coarsening,rather than the traditional discontinuous recrystallization for the quasi-static compressed aluminum. 展开更多
关键词 strain rate thermal stability continuous recrystallization 1050 commercial pure aluminum
下载PDF
Formation of Field Reversed Configuration (FRC) on the Yingguang-I device 被引量:4
19
作者 Qizhi Sun Xianjun Yang +9 位作者 Yuesong Jia Lulu Li Dongfan Fang Xiaoming Zhao Weidong Qin Zhengfen Liu Wei Liu Jun Li Yuan Chi Xiaoguang Wang 《Matter and Radiation at Extremes》 SCIE EI CAS 2017年第5期263-274,共12页
As a hybrid approach to realizing fusion energy,Magnetized Target Fusion(MTF)based on the Field Reversed Configuration(FRC),which has the plasma density and confinement time in the range between magnetic and inertial ... As a hybrid approach to realizing fusion energy,Magnetized Target Fusion(MTF)based on the Field Reversed Configuration(FRC),which has the plasma density and confinement time in the range between magnetic and inertial confinement fusion,has been recently widely pursued around the world.To investigate the formation and confinement of the FRC plasma injector for MTF,the Yingguang-I,which is an FRC test device and contains a multi-bank program-discharged pulsed power sub-system,was constructed at the Institute of Fluid Physics(IFP),China.This paper presents the pulsed power components and their parameters of the device in detail,then gives a brief description of progress in experiments of FRC formation.Experimental results of the pulsed power sub-system show that the peak current/magnetic field of 110 kA/0.3 T,10 kA/1.2 Tand 1.7 MA/3.4 Twere achieved in the bias,mirror and q-pinch circuits with quarter cycle of 80 ms,700 ms and 3.8 ms respectively.The induced electric field in the neutral gas was greater than 0.25 kV/cm when the ionization bank was charged to 70 kV.With H_(2) gas of 8 Pa,the plasma target of density 10^(16) cm^(-3),separatrix radius 4 cm,half-length 17 cm,equilibrium temperature 200 eV and lifetime 3 ms(approximately the half pulse width of the reversed field)have been obtained through the q-pinch method when the bias,mirror,ionization and θ-pinch banks were charged to 5 kV,5 kV,55 kV and ±45 kV respectively.The images from the high-speed end-on framing camera demonstrate the formation processes of FRC and some features agree well with the results with the two-dimension magneto hydrodynamics code(2D-MHD). 展开更多
关键词 Magnetized Target Fusion(MTF) Field Reversed Configuration(FRC) Magnetized plasma Pulsed power
下载PDF
A Strength Softening Phase Transition Observed in Shocked (Mg0.92,Fe0.08)SiO3 Perovskite at About 83 GPa 被引量:3
20
作者 何林 龚自正 经福谦 《Chinese Physics Letters》 SCIE CAS CSCD 2008年第1期332-335,共4页
We report the experimental data of Hugoniot longitudinal sound velocity VL for natural (Mg0.92,Fe0.08)SiO3 enstatite sample at about 40-140 GPa, consisting of three new data and five previously reported data but rev... We report the experimental data of Hugoniot longitudinal sound velocity VL for natural (Mg0.92,Fe0.08)SiO3 enstatite sample at about 40-140 GPa, consisting of three new data and five previously reported data but revised by our new Hugoniot equation of state parameters. Three segments, separated by two discontinuities, appear in the VL-PH (shock pressure) plot. Analyses show that the first discontinuity at about 64 GPa, with a sharp increase of VL of about 21%, is judged to be a phase transition from enstatite to Pbnm perovskite (PV); while the second one at about 83 GPa, with a dramatic decrease of VL of about 23%, is likely caused by a subtle structural change from Pbnm PV to tetragonal PV, accompanied by material strength softening due to melting of oxygen sublattices. This strength softening evidence is obtained first from shock wave experiments, and probably has profound implications for probing into the origin of low seismic velocity anomaly in the Earth's lower mantle and thus constraining the geophysical and geochemical models for the Earth's lower mantle. 展开更多
关键词 PULSARS x-ray spectra relativity and gravitation REDSHIFT
下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部