In this paper, we report a simple and facile self-assembly method to successfully fabricate cationic metal porphyrin-MtTMPyP(Mt= Cobalt(Ⅱ), Manganese(Ⅲ), or Iron(Ⅲ); TMPyP = 5, 10, 15, 20-tetrakis(N-methylpyridiniu...In this paper, we report a simple and facile self-assembly method to successfully fabricate cationic metal porphyrin-MtTMPyP(Mt= Cobalt(Ⅱ), Manganese(Ⅲ), or Iron(Ⅲ); TMPyP = 5, 10, 15, 20-tetrakis(N-methylpyridinium-4-yl) porphyrin) intercalated into the layer of graphene oxide(GO) by the cooperative effects of electrostatic and π-π stacking interaction between positively charged metal porphyrin and negatively charged GO sheets. Followed by reduction with hydrazine vapor, a series of novel 2 D MtTMPyP/rGO_n were fabricated. The as-prepared 2 D hybrids were fully characterized and tested as non-noble metal catalysts for oxygen reduction reaction(ORR) in an alkaline medium. The MtTMPyP/rGO_n hybrids, especially CoTMPyP/rGO_5, demonstrated an improved electrocatalytic activity for ORR and a number of exchanged electrons close to 4-electron reaction, increased stability and excellent tolerance to methanol, showing a potential alternative catalyst for ORR in fuel cells and air batteries.展开更多
基金supported by Natural Science Fund of Jiangsu Province (BK20141247, BK20140447)Exceptional Talent Project in Jiangsu Province (2015-XCL-035)+3 种基金University Science Research Project of Jiangsu Province (13KJB430005, 11KJA430008)funded by the Priority Academic Program development of Jiangsu Higher Education InstitutionsJiangsu Province universities' "blue and green blue project"financial support from the ARC (CE140100012, FT130100380, and DP170102267)
文摘In this paper, we report a simple and facile self-assembly method to successfully fabricate cationic metal porphyrin-MtTMPyP(Mt= Cobalt(Ⅱ), Manganese(Ⅲ), or Iron(Ⅲ); TMPyP = 5, 10, 15, 20-tetrakis(N-methylpyridinium-4-yl) porphyrin) intercalated into the layer of graphene oxide(GO) by the cooperative effects of electrostatic and π-π stacking interaction between positively charged metal porphyrin and negatively charged GO sheets. Followed by reduction with hydrazine vapor, a series of novel 2 D MtTMPyP/rGO_n were fabricated. The as-prepared 2 D hybrids were fully characterized and tested as non-noble metal catalysts for oxygen reduction reaction(ORR) in an alkaline medium. The MtTMPyP/rGO_n hybrids, especially CoTMPyP/rGO_5, demonstrated an improved electrocatalytic activity for ORR and a number of exchanged electrons close to 4-electron reaction, increased stability and excellent tolerance to methanol, showing a potential alternative catalyst for ORR in fuel cells and air batteries.