期刊文献+
共找到205篇文章
< 1 2 11 >
每页显示 20 50 100
Room-temperature synthesis of full-component APbX_(3)perovskite nanocrystal inks for optoelectronic applications
1
作者 Xinyu Zhao Du Li +4 位作者 Xuliang Zhang Hehe Huang Chenyu Zhao Wanli Ma Jianyu Yuan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期87-94,共8页
Lead halide perovskite nanocrystals(PNCs)have received great research interests due to their excellent optoelectronic properties.However,high temperature,inert gas protection and insulating long-chain ligands are used... Lead halide perovskite nanocrystals(PNCs)have received great research interests due to their excellent optoelectronic properties.However,high temperature,inert gas protection and insulating long-chain ligands are used during the conventional hot-injection synthesis of PNCs,which limits their practical applications.In this work,we first develop a simple and scalable polar-solvent-free method for the preparation of full-component APbX_(3)(A=Cs,methylammonium(MA),formamidinium(FA),X=Cl,Br,I)PNCs under ambient condition.Through an exothermic reaction between butylamine(BA)and propionic acid(PA)short ligands,the PbX_(2) precursors could be well dissolved without use of any polar solvent.Meanwhile,the relatively lower growth rate of PNCs in our room-temperature reaction enables us to modulate the synthetic procedure to enhance the scalability(40-fold)and achieve large-scale synthesis.The resultant short ligands passivated PNC inks are compatible with varying solution depositing technique like spray coating for large-area film.Finally,we showcase that adopting the as-prepared MAPbI_(3) PNC inks,a self-powered photodetector is fabricated and shows a high photoresponsivity.These results demonstrate that our ambient-condition synthetic approach can accelerate the preparation of tunable and ready-to-use PNCs towards commercial optoelectronic applications. 展开更多
关键词 Room-temperaturesynthesis Perovskite nanocrystals Short-chainligands Large-scale PHOTODETECTOR
下载PDF
Unfolding the structure-property relationships of Li_(2)S anchoring on two-dimensional materials with high-throughput calculations and machine learning
2
作者 Lujie Jin Hongshuai Wang +2 位作者 Hao Zhao Yujin Ji Youyong Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第7期31-39,I0002,共10页
Lithium-sulfur(Li-S)batteries are notable for their high theoretical energy density,but the‘shuttle effect’and the limited conversion kinetics of Li-S species can downgrade their actual performance.An essential stra... Lithium-sulfur(Li-S)batteries are notable for their high theoretical energy density,but the‘shuttle effect’and the limited conversion kinetics of Li-S species can downgrade their actual performance.An essential strategy is to design anchoring materials(AMs)to appropriately adsorb Li-S species.Herein,we propose a new three-procedure protocol,named InfoAd(Informative Adsorption)to evaluate the anchoring of Li_(2)S on two-dimensional(2D)materials and disclose the underlying importance of material features by combining high-throughput calculation workflow and machine learning(ML).In this paradigm,we calculate the anchoring of Li_(2)S on 12552D A_(x)B_(y)(B in the VIA/VIIA group)materials and pick out 44(un)reported nontoxic 2D binary A_(x)B_(y)AMs,in which the importance of the geometric features on the anchoring effect is revealed by ML for the first time.We develop a new Infograph model for crystals to accurately predict whether a material has a moderate binding with Li_(2)S and extend it to all 2D materials.Our InfoAd protocol elucidates the underlying structure-property relationship of Li_(2)S adsorption on 2D materials and provides a general research framework of adsorption-related materials for catalysis and energy/substance storage. 展开更多
关键词 Adsorption Anchoring material Li-S battery Extreme gradient boosting Graph neural network Material geometry Semi-supervised learning
下载PDF
Improving the UV-light stability of silicon heterojunction solar cells through plasmon-enhanced luminescence downshifting of YVO_(4):Eu^(3+),Bi^(3+)nanophosphors decorated with Ag nanoparticles
3
作者 Cheng-Kun Wu Shuai Zou +6 位作者 Chen-Wei Peng Si-Wei Gu Meng-Fei Ni Yu-Lian Zeng Hua Sun Xiao-Hong Zhang Xiao-Dong Su 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第6期212-220,I0007,共10页
The ultraviolet(UV)light stability of silicon heterojunction(SHJ)solar cells should be addressed before large-scale production and applications.Introducing downshifting(DS)nanophosphors on top of solar cells that can ... The ultraviolet(UV)light stability of silicon heterojunction(SHJ)solar cells should be addressed before large-scale production and applications.Introducing downshifting(DS)nanophosphors on top of solar cells that can convert UV light to visible light may reduce UV-induced degradation(UVID)without sacrificing the power conversion efficiency(PCE).Herein,a novel composite DS nanomaterial composed of YVO_(4):Eu^(3+),Bi^(3+)nanoparticles(NPs)and AgNPs was synthesized and introduced onto the incident light side of industrial SHJ solar cells to achieve UV shielding.The YVO_(4):Eu^(3+),Bi^(3+)NPs and Ag NPs were synthesized via a sol-gel method and a wet chemical reduction method,respectively.Then,a composite structure of the YVO_(4):Eu^(3+),Bi^(3+)NPs decorated with Ag NPs was synthesized by an ultrasonic method.The emission intensities of the YVO_(4):Eu^(3+),Bi^(3+)nanophosphors were significantly enhanced upon decoration with an appropriate amount of~20 nm Ag NPs due to the localized surface plasmon resonance(LSPR)effect.Upon the introduction of LSPR-enhanced downshifting,the SHJ solar cells exhibited an~0.54%relative decrease in PCE degradation under UV irradiation with a cumulative dose of 45 k W h compared to their counterparts,suggesting excellent potential for application in UV-light stability enhancement of solar cells or modules. 展开更多
关键词 Downshifting Silver nanoparticles Localized surface plasmon resonance UV-light stability Silicon heterojunction solar cells
下载PDF
A Stable Open-Shell Conjugated Diradical Polymer with Ultra-High Photothermal Conversion Efficiency for NIR-Ⅱ Photo-Immunotherapy of Metastatic Tumor
4
作者 Yijian Gao Ying Liu +7 位作者 Xiliang Li Hui Wang Yuliang Yang Yu Luo Yingpeng Wan Chun‑sing Lee Shengliang Li Xiao‑Hong Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期1-14,共14页
Massive efforts have been concentrated on the advance of eminent near-infrared(NIR) photothermal materials(PTMs) in the NIR-Ⅱ window(1000–1700 nm), especially organic PTMs because of their intrinsic biological safet... Massive efforts have been concentrated on the advance of eminent near-infrared(NIR) photothermal materials(PTMs) in the NIR-Ⅱ window(1000–1700 nm), especially organic PTMs because of their intrinsic biological safety compared with inorganic PTMs. However, so far, only a few NIR-Ⅱresponsive organic PTMs was explored, and their photothermal conversion efficiencies(PCEs) still remain relatively low. Herein, donor–acceptor conjugated diradical polymers with open-shell characteristics are explored for synergistically photothermal immunotherapy of metastatic tumors in the NIR-Ⅱ window. By employing side-chain regulation, the conjugated diradical polymer TTB-2 with obvious NIR-Ⅱ absorption was developed, and its nanoparticles realize a record-breaking PCE of 87.7% upon NIR-Ⅱ light illustration. In vitro and in vivo experiments demonstrate that TTB-2 nanoparticles show good tumor photoablation with navigation of photoacoustic imaging in the NIR-Ⅱ window, without any side-effect. Moreover, by combining with PD-1 antibody,the pulmonary metastasis of breast cancer is high-effectively prevented by the efficient photo-immunity effect. Thus, this study explores superior PTMs for cancer metastasis theranostics in the NIR-Ⅱ window, offering a new horizon in developing radical-characteristic NIR-Ⅱ photothermal materials. 展开更多
关键词 NIR-Ⅱconjugated polymer PHOTOTHERMAL Radical Nanoparticles Cancer therapy
下载PDF
Atomically dispersed Fe sites on hierarchically porous carbon nanoplates for oxygen reduction reaction
5
作者 Ruixue Zheng Qinglei Meng +9 位作者 Hao Zhang Teng Li Di Yang Li Zhang Xiaolong Jia Changpeng Liu Jianbing Zhu Xiaozheng Duan Meiling Xiao Wei Xing 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期7-15,I0002,共10页
Developing cost-effective,robust and stable non-precious metal catalysts for oxygen reduction reaction(ORR) is of paramount importance for electrochemical energy conversion devices such as fuel cells and metal-air bat... Developing cost-effective,robust and stable non-precious metal catalysts for oxygen reduction reaction(ORR) is of paramount importance for electrochemical energy conversion devices such as fuel cells and metal-air batteries.Although Fe-N-C single atom catalysts(SACs) have been hailed as the most promising candidate due to the optimal binding strength of ORR intermediates on the Fe-N_(4) sites,they suffer from serious mass transport limitations as microporous templates/substrates,i.e.,zeolitic imidazolate frameworks(ZIFs),are usually employed to host the active sites.Motivated by this challenge,we herein develop a hydrogen-bonded organic framework(HOF)-assisted pyrolysis strategy to construct hierarchical micro/mesoporous carbon nanoplates for the deposition of atomically dispersed Fe-N_(4) sites.Such a design is accomplished by employing HOF nanoplates assembled from 2-aminoterephthalic acid(NH_(2)-BDC) and p-phenylenediamine(PDA) as both soft templates and C,N precursors.Benefitting from the structural merits inherited from HOF templates,the optimized catalyst(denoted as Fe-N-C SAC-950) displays outstanding ORR activity with a high half-wave potential of 0.895 V(vs.reversible hydrogen electrode(RHE)) and a small overpotential of 356 mV at 10 mA cm^(-2) for the oxygen evolution reaction(OER).More excitingly,its application potential is further verified by delivering superb rechargeability and cycling stability with a nearly unfading charge-discharge gap of 0.72 V after 160 h.Molecular dynamics(MD) simulations reveal that micro/mesoporous structure is conducive to the rapid mass transfer of O_(2),thus enhancing the ORR performance.In situ Raman results further indicate that the conversion of O_(2) to~*O_(2)-the rate-determining step(RDS) for Fe-N-C SAC-950.This work will provide a versatile strategy to construct single atom catalysts with desirable catalytic properties. 展开更多
关键词 Fe single atom catalysts Oxygen reduction reaction Mesoporous structure Active sites Zinc-air battery
下载PDF
Integrated Photothermal Nanoreactors for Effi cient Hydrogenation of CO_(2) 被引量:1
6
作者 Jiahui Shen Rui Tang +8 位作者 Zhiyi Wu Xiao Wang Mingyu Chu Mujin Cai Chengcheng Zhang Liang Zhang Kui Yin Le He Chaoran Li 《Transactions of Tianjin University》 EI CAS 2022年第4期236-244,共9页
To alleviate the energy crisis and global warming,photothermal catalysis is an attractive way to effi ciently convert CO_(2)and renewable H_(2) into value-added fuels and chemicals.However,the catalytic performance is... To alleviate the energy crisis and global warming,photothermal catalysis is an attractive way to effi ciently convert CO_(2)and renewable H_(2) into value-added fuels and chemicals.However,the catalytic performance is usually restricted by the trade-off between the dispersity and light absorption property of metal catalysts.Here we demonstrate a simple SiO 2-protected metal-organic framework pyrolysis strategy to fabricate a new type of integrated photothermal nanoreactor with a comparatively high metal loading,dispersity,and stability.The core-satellite structured Co@SiO_(2)exhibits strong sunlight-absorptive abil-ity and excellent catalytic activity in CO_(2)hydrogenation,which is ascribed to the functional separation of diff erent sizes of Co nanoparticles.Large-sized plasmonic Co nanoparticles are mainly responsible for the light absorption and conversion to heat(nanoheaters),whereas small-sized Co nanoparticles with high intrinsic activities are responsible for the catalysis(nanoreactors).This study provides a new concept for designing effi cient photothermal catalytic materials. 展开更多
关键词 CO_(2)hydrogenation Photothermal catalysis Integrated photothermal reactor Light absorption property Intrinsic catalytic capacity
下载PDF
In situ surface-confined fabrication of single atomic Fe-N_(4) on N-doped carbon nanoleaves for oxygen reduction reaction
7
作者 Xiaojing Jiang Jianian Chen +6 位作者 Fenglei Lyu Chen Cheng Qixuan Zhong Xuchun Wang Ayaz Mahsud Liang Zhang Qiao Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第8期482-491,I0011,共11页
Controllable fabrication of Fe-N-C based single-atom catalysts(SACs)for enhanced electrocatalytic performance is highly desirable but still challenging.Here,an in situ surface-confined strategy was demonstrated for th... Controllable fabrication of Fe-N-C based single-atom catalysts(SACs)for enhanced electrocatalytic performance is highly desirable but still challenging.Here,an in situ surface-confined strategy was demonstrated for the synthesis of single atomic Fe-N_(4))on N-doped carbon nanoleaves(L-FeNC).The in situ generated Zn3[Fe(CN)6]2 could not only serve as a protection layer against collapse of nanoleaves but also provide abundant Fe source for the formation of Fe-N moieties during pyrolysis,leading to high surface area and high graphitization degree of L-FeNC simultaneously.Benefiting from abundant Fe-N_(4))active sites,enhanced mass and charge transfer,the as-prepared L-FeNC manifested a half-wave potential of 0.89 V for oxygen reduction reaction(ORR)in 0.1 M KOH.A maximum power density of 140 m W cm^(-2)and stable discharge voltage even after operation for 50,000 s have been demonstrated when the L-FeNC was used as air cathode for Zn-air battery.This work not only provided a unique surfaceconfined strategy for the synthesis of two-dimensional nanocarbons,but also demonstrated the significant benefit from rational design and engineering of Fe-N-C SACs,thus offering great opportunities for fabrication of efficient energy conversion and storage devices. 展开更多
关键词 Single atom catalyst Iron-nitrogen-carbon Surface confine Oxygen reduction reaction Metal-organic frameworks
下载PDF
Manufacturing N,O-carboxymethyl chitosan-reduced graphene oxide under freeze-dying for performance improvement of Li-S battery
8
作者 Zhibin Jiang Lujie Jin +8 位作者 Xiying Jian Jinxia Huang Hongshuai Wang Binhong Wu Kang Wang Ling Chen Youyong Li Xiang Liu Weishan Li 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第1期282-305,共24页
Lithium-sulfur(Li-S) batteries can provide far higher energy density than currently commercialized lithium ion batteries, but challenges remain before it they are used in practice.One of the challenges is the shuttle ... Lithium-sulfur(Li-S) batteries can provide far higher energy density than currently commercialized lithium ion batteries, but challenges remain before it they are used in practice.One of the challenges is the shuttle effect that originates from soluble intermediates, like lithium polysulfides. To address this issue, we report a novel laminar composite, N,O-carboxymethyl chitosan-reduced graphene oxide(CC-rGO), which is manufactured via the self-assembly of CC onto GO and subsequent reduction of GO under an extreme condition of 1 Pa and-50°C. The synthesized laminar CC-rGO composite is mixed with acetylene black(AB) and coated on a commercial polypropylene(PP) membrane, resulting in a separator(CC-rGO/AB/PP) that can not only completely suppress the polysulfides penetration, but also can accelerate the lithium ion transportation, providing a Li-S battery with excellent cyclic stability and rate capability. As confirmed by theoretic simulations, this unique feature of CC-rGO is attributed to its strong repulsive interaction to polysulfide anions and its benefit for fast lithium ion transportation through the paths paved by the heteroatoms in CC. 展开更多
关键词 composite manufacturing N O-carboxymethyl chitosan reduced graphene oxide SEPARATOR lithium-sulfur battery
下载PDF
Nanoscale Precise Editing of Multiple Immune Stimulating Ligands on DNA Origami for T Cell Activation and Cell-Based Cancer Immunotherapy
9
作者 Lele Sun Fengyun Shen +3 位作者 Zijian Xiong Yu Chao Chunhai Fan Zhuang Liu 《CCS Chemistry》 CSCD 2024年第3期719-732,共14页
The spatial arrangement of activating ligands is known to have great influence on T cell activation.However,independently studying each ligand’s spatial organization parameter that affects T cell activation remains a... The spatial arrangement of activating ligands is known to have great influence on T cell activation.However,independently studying each ligand’s spatial organization parameter that affects T cell activation remains a great challenge.Here,with DNA origami,we precisely organized the CD3ɛantibodies simulating T cell receptor(TCR)ligands and CD28 antibodies simulating co-stimulatory ligands to interrogate the independent role of TCR-ligand spacing and local copy numbers as well as the spacing between TCR ligands and co-stimulatory ligands on T cell activation.We found that T cell activation benefited fromlocally concentrated TCR ligands with a shorter spacing and was maximized by an∼38 nm spacing between TCR ligands and co-stimulatory ligands.The T cell expander constructed based on our findings could efficiently expand CD8+T cells for tumor immunotherapy.Thus,the DNA nanostructurebased ligands’precise arrangement can be a unique tool in studying immune cell activations and cellbased immunotherapies. 展开更多
关键词 DNA origami T cell activation T cell receptor IMMUNE cancer immunotherapy
原文传递
Achieving structurally stable O3-type layered oxide cathodes through site-specific cation-anion co-substitution for sodium-ion batteries
10
作者 Yihao Shen Chen Cheng +5 位作者 Xiao Xia Lei Wang Xi Zhou Pan Zeng Jianrong Zeng Liang Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期411-418,I0011,共9页
O3-type layered oxides have garnered great attention as cathode materials for sodium-ion batteries because of their abundant reserves and high theoretical capacity.However,challenges persist in the form of uncontrolla... O3-type layered oxides have garnered great attention as cathode materials for sodium-ion batteries because of their abundant reserves and high theoretical capacity.However,challenges persist in the form of uncontrollable phase transitions and intricate Na^(+)diffusion pathways during cycling,resulting in compromised structural stability and reduced capacity over cycles.This study introduces a special approach employing site-specific Ca/F co-substitution within the layered structure of O_(3)-NaNi_(0.5)Mn_(0.5)O_(2) to effectively address these issues.Herein,the strategically site-specific doping of Ca into Na sites and F into O sites not only expands the Na^(+)diffusion pathways but also orchestrates a mild phase transition by suppressing the Na^(+)/vacancy ordering and providing strong metal-oxygen bonding strength,respectively.The as-synthesized Na_(0.95)Ca_(0.05)Ni_(0.5)Mn_(0.5)O_(1.95)F_(0.05)(NNMO-CaF)exhibits a mild O3→O3+O'3→P3 phase transition with minimized interlayer distance variation,leading to enhanced structural integrity and stability over extended cycles.As a result,NNMO-CaF delivers a high specific capacity of 119.5 mA h g^(-1)at a current density of 120 mA g^(-1)with a capacity retention of 87.1%after 100 cycles.This study presents a promising strategy to mitigate the challenges posed by multiple phase transitions and augment Na^(+)diffusion kinetics,thus paving the way for high-performance layered cathode materials in sodium-ion batteries. 展开更多
关键词 Sodium-ion batteries O3-type layered oxides Site-specific co-doping Phase transition
下载PDF
Simultaneous acceleration of sulfur reduction and oxidation on bifunctional electrocatalytic electrodes for quasi-solid-state Zn–S batteries
11
作者 Mingli Wang Hong Zhang +5 位作者 Tianhang Ding Fangjun Wu Lin Fu Bin Song Pengfei Cao Ke Lu 《Science China Chemistry》 SCIE EI CAS CSCD 2024年第5期1531-1538,共8页
The incomplete sulfur reduction and high ZnS re-oxidation energy barrier along with severe side reactions during the battery cycling compromise the practical application of Zn–S electrochemistry. Herein, a bifunction... The incomplete sulfur reduction and high ZnS re-oxidation energy barrier along with severe side reactions during the battery cycling compromise the practical application of Zn–S electrochemistry. Herein, a bifunctional electrocatalytic sulfur matrix that simultaneously accelerates the sulfur reduction and ZnS oxidation is proposed to realize a highly-efficient Zn–S cell. It is revealed that the N-heteroatom hotspots are more favorable for facilitating the conversion of S to ZnS while the CoO nanocrystal substantially lowers the ZnS activation energy barrier thereby suppressing the formation of disproportionation species(e.g.,SO_(4)^(2-)) and accumulation of inactive ZnS. Accordingly, the Co O anchored on the N-doped carbon-supported sulfur cathode delivers a high Zn^(2+)storage capacity of 1,172 m Ahg^(-1)and outstanding cycling stability with a capacity retention of 71.6% after500 cycles with a high average Coulombic efficiency of 97.8%. Simultaneously, the stable cycling of solid-state Zn–S pouch cells with an energy density of 585 Whkg^(-1)sulfuris also demonstrated. Moreover, the postmortem analysis reveals that the degradation of Zn–S cells is mainly attributed to the limited reversibility of Zn anodes rather than the ZnS decomposition and/or accumulation. The approach to the bidirectional catalysis manipulated the sulfur redox provides a new perspective to realize the theoretical potentials of Zn–S cells. 展开更多
关键词 Zn–S battery bifunctional catalysts solid-state battery sulfur redox degradation mechanism
原文传递
MOF-derived Cu embedded into N-doped mesoporous carbon as a robust support of PdAu nanocatalysts for ethanol electrooxidation
12
作者 Yu-Fu Huang Peng Wu +10 位作者 Jun-Ping Tang Jian Yang Jing Li Shuai Chen Xue-Ling Zhao ChengChen Bin-Wei Zhang Yan-Yun Ma Wei-Heng Shi Dong-Hai Lin Shi-Gang Sun 《Rare Metals》 SCIE EI CAS CSCD 2024年第3期1083-1094,共12页
Metal-organic frameworks(MOFs)h ave attracted widespread attention due to their large surface area and porous structure.Rationally designing the nanostructures of MOFs to promote their application in ethanol electroox... Metal-organic frameworks(MOFs)h ave attracted widespread attention due to their large surface area and porous structure.Rationally designing the nanostructures of MOFs to promote their application in ethanol electrooxidation is still a challenge.Here,a novel Cu-NCNs(Cu-nitrogen-doped carbon nanotubes)support was synthesized by pyrolysis of melamine(MEL)and Cu-ZIF-8 together,and then,Pd-Au nanoalloys were loaded by sodium borohydride reduction method to prepare PdAu@Cu-NCNs catalysts.The generating mesoporous carbon with high specific surface area and favorable electron and mass transport can be used as a potential excellent carrier for PdAu nanoparticles.In addition,the balance of catalyst composition and surface structure was tuned by controlling the content of Pd and Au.Thus,the best-performed Pd_(2)Au_(2)@Cu-NCN-1000-2(where 1000 means the carrier calcination temperature,and 2 means the calcination constant temperature time)catalyst exhibits better long-term stability and electrochemical activity for ethanol oxidation in alkaline media(4.80 A·mg^(-1)),which is 5.05 times higher than that of commercial Pd/C(0.95 A·mg^(-1)).Therefore,this work is beneficial to further promoting the application of MOFs in direct ethanol fuel cells(DEFCs)and can be used as inspiration for the design of more efficient catalyst support structures. 展开更多
关键词 Metal-organic frameworks(MOFs) N-DOPED Mesoporous carbon PdAu Ethanol electrooxidation
原文传递
Fluorescent Silicon Nanorods-Based Nanotheranostic Agents for Multimodal Imaging-Guided Photothermal Therapy 被引量:5
13
作者 Mingyue Cui Sangmo Liu +5 位作者 Bin Song Daoxia Guo Jinhua Wang Guyue Hu Yuanyuan Su Yao He 《Nano-Micro Letters》 SCIE EI CAS CSCD 2019年第4期293-307,共15页
The utilization of diagnosis to guide/aid therapy procedures has shown great prospects in the era of personalized medicine along with the recognition of tumor heterogeneity and complexity.Herein,a kind of multifunctio... The utilization of diagnosis to guide/aid therapy procedures has shown great prospects in the era of personalized medicine along with the recognition of tumor heterogeneity and complexity.Herein,a kind of multifunctional silicon-based nanostructure,i.e.,gold nanoparticles-decorated fluorescent silicon nanorods(Au@SiNRs),is fabricated and exploited for tumor-targeted multimodal imaging-guided photothermal therapy.In particular,the prepared Au@SiNRs feature high photothermal conversion efficiency(~43.9%)and strong photothermal stability(photothermal performance stays constant after five-cycle NIR laser irradiation),making them high-performance agents for simultaneously photoacoustic and infrared thermal imaging.The Au@SiNRs are readily modified with targeting peptide ligands,enabling an enhanced tumor accumulation with a high value of^8.74%ID g?1.Taking advantages of these unique merits,the Au@SiNRs are superbly suitable for specifically ablating tumors in vivo without appreciable toxicity under the guidance of multimodal imaging.Typically,all the mice treated with the Au@SiNRs remain alive,and no distinct tumor recurrence is observed during 60-day investigation. 展开更多
关键词 Gold NANOPARTICLE FLUORESCENT SILICON NANORODS Nanotheranostic MULTIMODAL imaging PHOTOTHERMAL therapy Tumor target
下载PDF
Boosting polysulfide redox conversion of Li-S batteries by one-step-synthesized Co-Mo bimetallic nitride 被引量:4
14
作者 Yingying Yan Hongtai Li +5 位作者 Chen Cheng Tianran Yan Wenping Gao Jing Mao Kehua Dai Liang Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第10期336-346,I0010,共12页
Lithium-sulfur(Li-S)batteries are considered as one of the most promising next generation energy storage systems due to the high theoretical specific capacity,low cost,and environmental benignity.However,the notorious... Lithium-sulfur(Li-S)batteries are considered as one of the most promising next generation energy storage systems due to the high theoretical specific capacity,low cost,and environmental benignity.However,the notorious shuttle effect of polysulfides hinders the practical application of Li-S batteries.Herein,we have rationally designed and synthesized sea urchin-like Co-Mo bimetallic nitride(Co_(3) MO_(3) N)in the absence of additional nitrogen sources with only one step,which was applied as the sulfur host materials for Li-S batteries.The results indicate that Co_(3) Mo_(3) N can efficiently anchor and catalyze the conversion of polysulfides,thus accelerating the electrochemical reaction kinetics and enabling prominent electrochemical properties.As a consequence,the S@Co_(3) Mo_(3) N cathode exhibits a high rate performance of 705 mAh g^(-1) at 3 C rate and an excellent cycling stability with a low capacity fading rate of 0.08%per cycle at 1 C over 600 cycles.Even at a high sulfur loading of 5.4 cmg cm^(-2),it delivers a high initial areal capacity of 4.50 mAh cm^(-2) which is still retained at 3.64 mAh cm^(-2) after 120 cycles.Furthermore,the catalytic mechanism and structural stability of Co_(3) Mo_(3) N during cycling were elucidated by a combination of X-ray photoelectron spectroscopy and X-ray absorption fine structure.This work highlights the strategy of structure-catalysis engineering of bimetallic nitride,which is expected to have a wide application in Li-S batteries. 展开更多
关键词 Lithium-sulfur batteries Co3Mo3N Shuttle effect Catalytic effect XAFS
下载PDF
Carbon dots regulate the interface electron transfer and catalytic kinetics of Pt-based alloys catalyst for highly efficient hydrogen oxidation 被引量:3
15
作者 Jie Wu Yunjie Zhou +6 位作者 Haodong Nie Kaiqiang Wei Hui Huang Fan Liao Yang Liu Mingwang Shao Zhenhui Kang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第3期61-67,I0003,共8页
The regulation of interface electron-transfer and catalytic kinetics is very important to design the efficient electrocatalyst for alkaline hydrogen oxidation reaction(HOR).Here,we show the Pt-Ni alloy nanoparticles(P... The regulation of interface electron-transfer and catalytic kinetics is very important to design the efficient electrocatalyst for alkaline hydrogen oxidation reaction(HOR).Here,we show the Pt-Ni alloy nanoparticles(PtNi_(2))have an enhanced HOR activity compared with single component Pt catalyst.While,the interface electron-transfer kinetics of PtNi_(2)catalyst exhibits a very wide electron-transfer speed distribution.When combined with carbon dots(CDs),the interface charge transfer of PtNi_(2)-CDs composite is optimized,and then the PtNi_(2)-5 mg CDs exhibits about 2.67 times and 4.04 times higher mass and specific activity in 0.1 M KOH than that of 20%commercial Pt/C.In this system,CDs also contribute to trapping H^(+)and H_(2)O generated during HOR,tuning hydrogen binding energy(HBE),and regulating interface electron transfer.This work provides a deep understanding of the interface catalytic kinetics of Pt-based alloys towards highly efficient HOR catalysts design. 展开更多
关键词 Pt-based alloys Carbon dots Interface electron transfer Interface catalytic kinetics Hydrogen oxidation reaction
下载PDF
Modulating eg orbitals through ligand engineering to boost the electrocatalytic activity of NiSe for advanced lithium-sulfur batteries 被引量:1
16
作者 Tianran Yan Jie Feng +6 位作者 Pan Zeng Gang Zhao Lei Wang Cheng Yuan Chen Cheng Youyong Li Liang Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第11期317-323,I0009,共8页
Accelerating the sluggish redox kinetics of lithium polysulfides(LiPSs)by electrocatalysis is essential to achieve high performance lithium-sulfur(Li-S)batteries.However,the issue of insufficient catalytic activity re... Accelerating the sluggish redox kinetics of lithium polysulfides(LiPSs)by electrocatalysis is essential to achieve high performance lithium-sulfur(Li-S)batteries.However,the issue of insufficient catalytic activity remains to be addressed.Herein,a strategy of modulating e_(g) orbitals through ligand engineering has been proposed to boost the catalytic activity of NiSe for rapid LiPSs redox conversion.The X-ray spectroscopic measurements and theoretical calculations reveal that partial substitution of Se with N disrupts the octahedral coordination of Ni atoms in NiSe,leading to the reduced degeneracy and upward shift of e_(g) orbitals of Ni 3 d states.As a consequence,the bonding strength of N-substituted NiSe(N-NiSe)with LiPSs is enhanced,which facilitates the interfacial charge transfer kinetics and accelerates the LiPSs redox kinetics.Therefore,the Li-S batteries assembled with N-NiSe present a high capacity of 682.6 mAh g^(-1) at a high rate of 5 C and a high areal capacity of 6.5 mAh cm^(-2)at a high sulfur loading of 6 mg cm^(-2).This work provides a promising strategy to develop efficient transition-metal based electrocatalysts for Li-S batteries through e_(g) orbital modulation. 展开更多
关键词 Li-S batteries eg orbitals modulation Ligand engineering Shuttle effect Redox kinetics
下载PDF
Unraveling Passivation Mechanism of Imidazolium-Based Ionic Liquids on Inorganic Perovskite to Achieve Near-Record-Efficiency CsPbI_(2)Br Solar Cells 被引量:2
17
作者 Jie Xu Jian Cui +12 位作者 Shaomin Yang Yu Han Xi Guo Yuhang Che Dongfang Xu Chenyang Duan Wenjing Zhao Kunpeng Guo Wanli Ma Baomin Xu Jianxi Yao Zhike Liu Shengzhong Liu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第1期152-166,共15页
The application of ionic liquids in perovskite has attracted wide-spread attention for its astounding performance improvement of perovskite solar cells(PSCs).However,the detailed mechanisms behind the improvement rema... The application of ionic liquids in perovskite has attracted wide-spread attention for its astounding performance improvement of perovskite solar cells(PSCs).However,the detailed mechanisms behind the improvement remain mysterious.Herein,a series of imidazolium-based ionic liquids(IILs)with different cations and anions is systematically investigated to elucidate the passivation mechanism of IILs on inorganic perovskites.It is found that IILs display the following advantages:(1)They form ionic bonds with Cs^(+)and Pb^(2+)cations on the surface and at the grain boundaries of perovskite films,which could effectively heal/reduce the Cs^(+)/I−vacancies and Pb-related defects;(2)They serve as a bridge between the perovskite and the hole-transport-layer for effective charge extraction and transfer;and(3)They increase the hydrophobicity of the perovskite surface to further improve the stability of the CsPbI_(2)Br PSCs.The combination of the above effects results in suppressed non-radiative recombination loss in CsPbI_(2)Br PSCs and an impressive power conversion efficiency of 17.02%.Additionally,the CsPbI_(2)Br PSCs with IILs surface modification exhibited improved ambient and light illumination stability.Our results provide guidance for an indepth understanding of the passivation mechanism of IILs in inorganic perovskites. 展开更多
关键词 Ionic liquids Inorganic perovskite IMIDAZOLIUM PASSIVATION High efficiency
下载PDF
Molecular beam epitaxy growth of monolayer hexagonal MnTe_(2)on Si(111)substrate
18
作者 卢帅 彭坤 +16 位作者 王鹏栋 陈爱喜 任伟 方鑫伟 伍莹 李治云 李慧芳 程飞宇 熊康林 杨继勇 王俊忠 丁孙安 蒋烨平 王利 李青 李坊森 迟力峰 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第12期142-147,共6页
Monolayer MnTe_(2)stabilized as 1 T structure has been theoretically predicted to be a two-dimensional(2 D)ferromagnetic metal and can be tuned via strain engineering.There is no naturally van der Waals(vdW)layered Mn... Monolayer MnTe_(2)stabilized as 1 T structure has been theoretically predicted to be a two-dimensional(2 D)ferromagnetic metal and can be tuned via strain engineering.There is no naturally van der Waals(vdW)layered MnTe_(2)bulk,leaving mechanical exfoliation impossible to prepare monolayer MnTe_(2).Herein,by means of molecular beam epitaxy(MBE),we successfully prepared monolayer hexagonal MnTe_(2)on Si(111)under Te rich condition.Sharp reflection high-energy electron diffraction(RHEED)and low-energy electron diffraction(LEED)patterns suggest the monolayer is atomically flat without surface reconstruction.The valence state of Mn^(4+)and the atom ratio of([Te]:[Mn])further confirm the MnTe_(2)compound.Scanning tunneling spectroscopy(STS)shows the hexagonal MnTe_(2)monolayer is a semiconductor with a large bandgap of~2.78 eV.The valence-band maximum(VBM)locates at theΓpoint,as illustrated by angle-resolved photoemission spectroscopy(ARPES),below which three hole-type bands with parabolic dispersion can be identified.The successful synthesis of monolayer MnTe_(2)film provides a new platform to investigate the 2D magnetism. 展开更多
关键词 molecular beam epitaxy hexagonal MnTe_(2) band structure
下载PDF
Oxygen-coordinated low-nucleus cluster catalysts for enhanced electrocatalytic water oxidation 被引量:3
19
作者 Jiapeng Ji Yunpeng Hou +7 位作者 Shiyu Zhou Tong Qiu Liang Zhang Lu Ma Chao Qian Shaodong Zhou Chengdu Liang Min Ling 《Carbon Energy》 SCIE CSCD 2023年第2期137-147,共11页
The oxygen evolution reaction(OER)activity of single-atom catalysts(SACs)is closely related to the coordination environment of the active site.Oxygencoordinated atomic metal species bring about unique features beyond ... The oxygen evolution reaction(OER)activity of single-atom catalysts(SACs)is closely related to the coordination environment of the active site.Oxygencoordinated atomic metal species bring about unique features beyond nitrogen-coordinated atomic metal species due to the fact that the M-O bond is weaker than the M-N bond.Herein,a series of metal-oxygen-carbon structured low-nucleus clusters(LNCs)are successfully anchored on the surface of multiwalled carbon nanotubes(M-MWCNTs,M=Ni,Co,or Fe)through a foolproof low-temperature gas transfer(300℃)method without any further treatment.The morphology and coordination configuration of the LNCs at the atomic level were confirmed by comprehensive characterizations.The synthetic Ni-MWCNTs electrocatalyst features excellent OER activity and stability under alkaline conditions,transcending the performances of Co-MWCNTs,Fe-MWCNTs and RuO_(2).Density functional theory calculations reveal that the moderate oxidation of low-nucleus Ni clusters changes the unoccupied orbital of Ni atoms,thereby lowering the energy barrier of the OER rate-limiting step and making the OER process more energy-efficient.This study demonstrates a novel versatile platform for large-scale manufacturing of oxygen-coordinated LNC catalysts. 展开更多
关键词 electrocatalytic water oxidation low-nucleus cluster low-temperature gas transfer metal-oxygen-carbon structure
下载PDF
Engineering surface strain for site-selective island growth of Au on anisotropic Au nanostructures 被引量:1
20
作者 Fan Yang Ji Feng +4 位作者 Jinxing Chen Zuyang Ye Jihua Chen Dale KHensley Yadong Yin 《Nano Research》 SCIE EI CSCD 2023年第4期5873-5879,共7页
Controlled growth of islands on plasmonic metal nanoparticles represents a novel strategy in creating unique morphologies that are difficult to achieve by conventional colloidal synthesis processes,where the nanoparti... Controlled growth of islands on plasmonic metal nanoparticles represents a novel strategy in creating unique morphologies that are difficult to achieve by conventional colloidal synthesis processes,where the nanoparticle morphologies are typically determined by the preferential development of certain crystal facets.This work exploits an effective surface-engineering strategy for site-selective island growth of Au on anisotropic Au nanostructures.Selective ligand modification is first employed to direct the site-selective deposition of a thin transition layer of a secondary metal,e.g.,Pd,which has a considerable lattice mismatch with Au.The selective deposition of Pd on the original seeds produces a high contrast in the surface strain that guides the subsequent site-selective growth of Au islands.This strategy proves effective in not only inducing the island growth of Au on Au nanostructures but also manipulating the location of grown islands.By taking advantage of the iodide-assisted oxidative ripening process and the surface strain profile on Au nanostructures,we further demonstrate the precise control of the islands’number,coverage,and wetting degree,allowing fine-tuning of nanoparticles’optical properties. 展开更多
关键词 PLASMONIC Au nanorods island growth seed-mediated growth site-selective
原文传递
上一页 1 2 11 下一页 到第
使用帮助 返回顶部