Using the ATG-6138 mercury detector recently developed by the Hangzhou Aadtech Co.Ltd.,a record of the co-seismic effect of mercury(Hg)vapor accompanying the 2015 Nepal M_S8.1 earthquake was obtained in the Mile monit...Using the ATG-6138 mercury detector recently developed by the Hangzhou Aadtech Co.Ltd.,a record of the co-seismic effect of mercury(Hg)vapor accompanying the 2015 Nepal M_S8.1 earthquake was obtained in the Mile monitoring well,Yunnan Province.This is the first record of co-seismic effect obtained by mercury vapor observation in China.Such a fact implies that it would be possible to record more information about crustal dynamic effects,such as solid tide,co-seismic effect,etc.,by further improving observation instrument precision and increasing the sampling frequency of the chemical quantity of subsurface fluids.This may help us to raise the capability of earthquake precursor monitoring and forecasting in the future.展开更多
It is difficult to acquire deep seismic reflection profiles on land using the standard oil-industry acquisition parameters. This is especially true over much of Tibetan plateau not only because of severe topography an...It is difficult to acquire deep seismic reflection profiles on land using the standard oil-industry acquisition parameters. This is especially true over much of Tibetan plateau not only because of severe topography and rapid variation of both velocity and thickness of near-surface layer, but also strong attenuation of seismic wave through the thickest crust of the Earth. Large explosive sources had been successfully detonated in US, but its application in Tibetan plateau rarely has an example of good quality. Presented herein is the data of a 200-kg single shot we recorded in west Qinling, northeastern Tibetan plateau. The shot gather data with phenomenal signal-to-noise ratios illustrate the energy of the Prop phase. Although the observations are only limited to the northeastern Tibetan plateau and thus cannot comprise an exhaustive study, they nevertheless suggest that large explosions may be a useful exploration tool in Tibetan Plateau where standard seismic sources and profiling methods fail to produce adequate data of low crust.展开更多
基金sponsored by the Earthquake Science and Technology Spark Plan,China (XH15041Y)
文摘Using the ATG-6138 mercury detector recently developed by the Hangzhou Aadtech Co.Ltd.,a record of the co-seismic effect of mercury(Hg)vapor accompanying the 2015 Nepal M_S8.1 earthquake was obtained in the Mile monitoring well,Yunnan Province.This is the first record of co-seismic effect obtained by mercury vapor observation in China.Such a fact implies that it would be possible to record more information about crustal dynamic effects,such as solid tide,co-seismic effect,etc.,by further improving observation instrument precision and increasing the sampling frequency of the chemical quantity of subsurface fluids.This may help us to raise the capability of earthquake precursor monitoring and forecasting in the future.
基金the International Sciences and Technology Cooperation (2006DFA21340)the special funds for the Sciences and Technology Research of Public Welfare Trades (200811021)+3 种基金the key innovation project of sciences and technology of Ministry of Land and Resources (1212010711813)the basic outlay of scientific research work from Ministry of Science and Technology of the People’s Republic of China (J0803)the National Natural Science Foundation of China (40830316 and 40874045)SINOPPROBE-II
文摘It is difficult to acquire deep seismic reflection profiles on land using the standard oil-industry acquisition parameters. This is especially true over much of Tibetan plateau not only because of severe topography and rapid variation of both velocity and thickness of near-surface layer, but also strong attenuation of seismic wave through the thickest crust of the Earth. Large explosive sources had been successfully detonated in US, but its application in Tibetan plateau rarely has an example of good quality. Presented herein is the data of a 200-kg single shot we recorded in west Qinling, northeastern Tibetan plateau. The shot gather data with phenomenal signal-to-noise ratios illustrate the energy of the Prop phase. Although the observations are only limited to the northeastern Tibetan plateau and thus cannot comprise an exhaustive study, they nevertheless suggest that large explosions may be a useful exploration tool in Tibetan Plateau where standard seismic sources and profiling methods fail to produce adequate data of low crust.