By using a broadband Lg attenuation model developed for the Tibetan Plateau,we isolate source terms by removing attenuation and site effects from the observed Lg-wave displacement spectra of the M 7.0 earthquake that ...By using a broadband Lg attenuation model developed for the Tibetan Plateau,we isolate source terms by removing attenuation and site effects from the observed Lg-wave displacement spectra of the M 7.0 earthquake that occurred on August 8,2017,in Jiuzhaigou,China,and its aftershock sequence.Thus,the source parameters,including the scalar seismic moment,comer frequency and stress drop,of these events can be further estimated.The estimated stress drops vary from 47.1 kPa to 7149.6 kPa,with a median value of 59.4 kPa and most values falling between 50 kPa and 75 kPa.The estimated stress drops show significant spatial variations.Lower stress drops were mainly found close to the mainshock and on the seismogenic fault plane with large coseismic slip.In contrast,the highest stress drop was 7.1 MPa for the mainshock,and relatively large stress drops were also found for aftershocks away from the major seismogenic fault and at depths deeper than the zone with large coseismic slip.By using a statistical method,we found self-similarity among some of the aftershocks with a nearly constant stress drop.In contrast,the stress drop increased with the seismic moment for other aftershocks.The amount of stress released during earthquakes is a fundamental characteristic of the earthquake rupture process.As such,the stress drop represents a key parameter for improving our understanding of earthquake source physics.展开更多
The seismological characteristics of the 15 February 2013 Chelyabinsk bolide explosion are investigated based on seismograms recorded at 50 stations with epicentral distances ranging from 229 to 4324 km. By using 8–2...The seismological characteristics of the 15 February 2013 Chelyabinsk bolide explosion are investigated based on seismograms recorded at 50 stations with epicentral distances ranging from 229 to 4324 km. By using 8–25 s vertical-component Rayleigh waveforms,we obtain a surface-wave magnitude of 4.17±0.31 for this event. According to the relationship among the Rayleigh-wave magnitude,burst height and explosive yield, the explosion yield is estimated to be 686 kt. Using a single-force source to fit the observed Rayleigh waveforms, we obtain a single force of 1.03×10^(12) N, which is equivalent to the impact from the shock wave generated by the bolide explosion.展开更多
Seismic migration moves reflections to their true subsurface positions and yields seismic images of subsurface areas. However, due to limited acquisition aperture, complex overburden structure and target dipping angle...Seismic migration moves reflections to their true subsurface positions and yields seismic images of subsurface areas. However, due to limited acquisition aperture, complex overburden structure and target dipping angle, the migration often generates a distorted image of the actual subsurface structure. Seismic illumination and resolution analyses provide a quantitative description of how the above-mentioned factors distort the image. The point spread function (PSF) gives the resolution of the depth image and carries full information about the factors affecting the quality of the image. The staining algorithm establishes a correspondence between a certain structure and its relevant wavefield and reflected data. In this paper, we use the staining algorithm to calculate the PSFs, then use these PSFs for extracting the acquisition dip response and correcting the original depth image by deconvolution. We present relevant results of the SEG salt model. The staining algorithm provides an efficient tool for calculating the PSF and for conducting broadband seismic illumination and resolution analyses.展开更多
The discrete time wavelet transform has been used to develop software that detects seismic P and S-phases. The detection algorithm is based on the enhanced amplitude and polarization information provided by the wavele...The discrete time wavelet transform has been used to develop software that detects seismic P and S-phases. The detection algorithm is based on the enhanced amplitude and polarization information provided by the wavelet transform coefficients of the raw seismic data. The algorithm detects phases, determines arrival times and indicates the seismic event direction from three component seismic data that represents the ground displacement in three orthogonal directions. The essential concept is that strong features of the seismic signal are present in the wavelet coefficients across several scales of time and direction. The P-phase is detected by generating a function using polarization information while S-phase is detected by generating a function based on the transverse to radial amplitude ratio. These functions are shown to be very effective metrics in detecting P and S-phases and for determining their arrival times for low signal-to-noise arrivals. Results are compared with arrival times obtained by a human analyst as well as with a standard STA/LTA algorithm from local and regional earthquakes and found to be consistent.展开更多
Submarine sand waves, vital to seabed stability, are an important consideration for oceanic engineering projects such as oil pipe lines and submarine cables. The properties of surface sediment and the evolvement of su...Submarine sand waves, vital to seabed stability, are an important consideration for oceanic engineering projects such as oil pipe lines and submarine cables. The properties of surface sediment and the evolvement of submarine sand waves in a specified area in the South China Sea are studied using both a hydrological model and field observational data. The bottom flow field data between 2010 and 2011 in the study area are simulated by the Regional Ocean Model System (ROMS). The migration of submarine sand waves is calculated using Rubin's formula along with typhoon data and bottom flow field data, which allows for the analysis of sand wave response under the influence of typhoons. The migration direction calculated by Rubin's formula and bottom flow are very similar to collected data. The migration distance of different positions is between 0.0 m and 21.8 m, which reciprocates cumulatively. This shows that Rubin's formula can predict the progress of submarine sand waves with the bottom flow simulated by ROMS. The migration distances of 2 sites in the study area are 2.0 m and 2.9 m during the typhoon "Fanapi". The proportion of the calculated migration distance by the typhoon is 9.17% and 26.36% of the annual migration distance, respectively, which proves that the typhoon can make a significant impact on submarine sand waves.展开更多
In order to isolate magnetic signals carried by single-domain (SD) ferrimagnetic (FM) minerals from multi-domain (MD) FM minerals, we developed a few pa- rameters using partial anhysteretic remanent magnetization (pAR...In order to isolate magnetic signals carried by single-domain (SD) ferrimagnetic (FM) minerals from multi-domain (MD) FM minerals, we developed a few pa- rameters using partial anhysteretic remanent magnetization (pARM). Because MD fraction contains only soft (easy to be demagnetized) coercivity spectrum, pARM(>20 mT) was sensitive in eliminating MD contributions. Ratio of pARM(5 mT, 10 mT)/pARM(0, 5 mT) is useful in quantifying a rela- tive abundance of mass ratio between SD and MD fractions. These new proxies can quickly characterize the details of grain size distribution of magnetic minerals in paleoclimatic and paleomagnetic studies.展开更多
The Himalayan orogen consists of three major lithologic units that are separated by two major north-dipping faults: the Lesser Himalayan Sequence (LHS) below the Main Central Thrust (MCT), the Greater Himalayan Crysta...The Himalayan orogen consists of three major lithologic units that are separated by two major north-dipping faults: the Lesser Himalayan Sequence (LHS) below the Main Central Thrust (MCT), the Greater Himalayan Crystalline Complex (GHC) above the MCT, and the Tethyan Himalayan Sequence (THS) juxtaposed by the South Tibet Detachment fault (STD) over the GHC. Due to widespread meta-morphism and intense deformation, differentiating the above three lithologic units is often difficult. This problem has been overcome by the use of Sm-Nd isotopic analysis. The previous studies suggested that the LHS can be clearly distinguished from the GHC and THS by their Nd isotope compositions. However, the lack of detailed and systematic Sm-Nd isotopic studies of the THS across the Himalaya in general has made differentiation of this unit from the nearby GHC impossible, as the two appear to share overlapping Nd compositions and model ages. To address this problem, we systematically sam-pled and analyzed Nd isotopes of the THS in southeastern Tibet directly north of Bhutan. Our study identifies two distinctive fields in a εNd -TDM plot. The first is defined by the εNd(210 Ma) values of -3.45 to -7.34 and TDM values of 1.15 to 1.29 Ga from a Late Triassic turbidite sequence, which are broadly similar to those obtained from the Lhasa block. The second field is derived from the Early Cretaceous meta-sedimentary rocks with εNd(130 Ma) values from -15.24 to -16.61 and TDM values from 1.63 to 2.00 Ga; these values are similar to those obtained from the Greater Himalayan Crystalline Complex in Bhutan directly south of our sampling traverse, which has εNd(130 Ma) values of -10.89 to -16.32 and Nd model ages (TDM) of 1.73 to 2.20 Ga. From the above observations, we suggest that the Late Triassic strata of the southeast Tibetan THS were derived from the Lhasa block in the north, while the Early Cretaceous strata of the THS were derived from a source similar to the High Himalayan Crystalline Complex or Indian craton in the south. Our interpretation is consistent with the existing palaeocurrent data and provenance analysis of the Late Triassic strata in southeastern Tibet, which indicate the sediments derived from a northern source. Thus, we suggest that the Lhasa terrane and the Indian craton were close to one another in the Late Triassic and were separated by a rift valley across which a large submarine fan was transported southward and deposited on the future northern margin of the Indian continent.展开更多
Low frequency electromagnetic fluctuations in the vicinity of a magnetospheric substorm onset were investigated using simultaneous observations by THEMIS multiple probes in the near-Earth plasma sheet in the magnetota...Low frequency electromagnetic fluctuations in the vicinity of a magnetospheric substorm onset were investigated using simultaneous observations by THEMIS multiple probes in the near-Earth plasma sheet in the magnetotail.The observations indicate that in the vicinity of a substorm onset,kinetic Alfvén waves can be excited in the high-βplasma sheet(β=2μ0nT/B 2 ,the ratio of plasma thermal pressure to magnetic pressure)within the near-Earth magnetotail.The kinetic Alfvén wave has a small spatial scale in the high-βplasma.The parallel electric field accompanying kinetic Alfvén waves accelerates the charged particles along the magnetic field.The kinetic Alfvén waves play an important role in the substorm trigger process,and possibly in the formation of a substorm current wedge.展开更多
Using in situ observations from THEMIS A, D and E during the 2008–2011 tail season, we present a statistical study of the evolution of pressure gradients in the near-Earth tail during bursty bulk flow(BBF) convection...Using in situ observations from THEMIS A, D and E during the 2008–2011 tail season, we present a statistical study of the evolution of pressure gradients in the near-Earth tail during bursty bulk flow(BBF) convection.We identified 138 substorm BBFs and 2,197 non-substorm BBFs for this study. We found that both the pressure and the BZcomponent of the magnetic field were enhanced at the arrival of BBFs at the spacecraft locations. We suggest that the increase of BZduring non-substorm BBFs is associated with flux pile-up. However, the much stronger enhancement of BZduring substorm BBFs implies the occurrence of magnetic field dipolarization which is caused by both the flux pile-up process and near-Earth current disruption. Furthermore, a bow-wave-like high pressure appears to be formed at the arrival of substorm BBFs,which is responsible for the formation of region-1-sense FACs. The azimuthal pressure gradient associated with the arrival of substorm BBFs lasts for about 5 min. The enhanced pressure gradient associated with the bow waveis caused by the braking and diversion of the Earthward flow in the inner plasma sheet. The results from this statistical study suggest that the braking and azimuthal diversion of BBFs may commonly create azimuthal pressure gradients, which are related to the formation of the FAC of the substorm current wedge.展开更多
Previous studies suggest that dipolarization fronts (DFs) are 1 to 3RE (RE is the earth radius) wide in the dawn-dusk direction. Recent kinetic simulations have found that DFs may break up into small-scale structures ...Previous studies suggest that dipolarization fronts (DFs) are 1 to 3RE (RE is the earth radius) wide in the dawn-dusk direction. Recent kinetic simulations have found that DFs may break up into small-scale structures after they are produced by reconnection. Motivated by this simulation, we revisited the scale size of DFs in the dawn-dusk direction by using Cluster observations during the years when the inter-distance among Cluster spacecraft was between 1000 and 2000 km. We selected the DFs that were detected by more than one spacecraft and estimated the radii of these DFs by a simple geometrical analysis, which is based on comparison of DF normals observed by different spacecraft. We found a few DFs that were only a few ion inertial lengths in the dawn-dusk direction. These results point out the importance of multi-scale coupling during the evolution of DFs.展开更多
In land seismic exploration,strong near-surface heterogeneities can cause serious problems in seismic data acquisition and the quality of depth imaging.By introducing random velocity models to simulate velocity fluctu...In land seismic exploration,strong near-surface heterogeneities can cause serious problems in seismic data acquisition and the quality of depth imaging.By introducing random velocity models to simulate velocity fluctuations in the near-surface layer and using the point spread function to characterize image quality,we examine how the scattering generated in near-surface heterogeneities can affect the subsurface image.In addition to the commonly known scattering noises which lower the signal to noise ratio in seismic data,our results also reveal that intermediate scale hetero-geneities generate forward scattering which forms phase or travel time fluctuations.Due to intermediate-scale uncertainty in the shallow part of the migration velocity model,these phase changes are carried to the target by the extrapolated wavefields,breaking the zero phase image condition at the image point.This is a primary reason for deteriorated image quality in regions with strong near-surface scattering.If this intermediate-scale information can be obtained and built into the migration velocity,the subsurface image quality can be largely improved.These results can be the ba-sis for further numerical investigations and field experiments.The proposed analysis method can also be used to evaluate other potential methods for dealing with near-surface scattering.展开更多
The Altai orogen is a typical intracontinental orogen in Central Asia that experienced far-field deformation associated with Indian-Eurasian plate convergence. This region is characterized by uplift comparable to that...The Altai orogen is a typical intracontinental orogen in Central Asia that experienced far-field deformation associated with Indian-Eurasian plate convergence. This region is characterized by uplift comparable to that of the Tianshan Mountains but has a distinct strain rate. Half of the Indo-Asia strain is accommodated by the Tianshan Mountains, whereas the Altai Mountains accommodates only 10%. To elucidate how the Altai Mountains produced such a large amount of uplift with only one-fifth of the strain rate of the Tianshan Mountains, we constructed a detailed crustal image of the Altai Mountains based on a new 166.8-km deep seismic reflection profile. The prestack migration images reveal an antiform within the Erqis crust, an ~10 km Moho offset between the Altai arc and the East Junggar area, and a major south-dipping(30° dip) thrust in the lower crust beneath the Altai Mountains, which is connected to the Moho offset. The south-dipping thrust not only records the southward subduction of the Ob-Zaisan Ocean in the Paleozoic but also controlled the Altai deformation pattern in the Cenozoic with the Erqis antiform. The Erqis antiform prevented the extension of deformation to the Junggar crust. The southdipping thrust in the lower crust of the Altai area caused extrusion of the lower crust, generating uplift at the surface, thickening of the crust, and steep(~10 km) Moho deepening in the Altai Mountains. This process significantly widened the deformation zone of the Altai Mountains. These findings provide a new geodynamic model for describing how inherited crustal structure controls intraplate deformation without strong horizontal stress.展开更多
基金The authors are grateful to the two anonymous reviewers,whose constructive comments have improved this paperThis work was supported by the Special Fund of China Seismic Experimental Site(Nos.2019CSES0103,2018CESE0102 and 2016CESE0203)+1 种基金the National Natural Science Foundation of China(Nos.41630210,41674060 and 41974054)the 13th Five-year Informatization Plan of Chinese Academy of Sciences(grant No.XXH13505-06)。
文摘By using a broadband Lg attenuation model developed for the Tibetan Plateau,we isolate source terms by removing attenuation and site effects from the observed Lg-wave displacement spectra of the M 7.0 earthquake that occurred on August 8,2017,in Jiuzhaigou,China,and its aftershock sequence.Thus,the source parameters,including the scalar seismic moment,comer frequency and stress drop,of these events can be further estimated.The estimated stress drops vary from 47.1 kPa to 7149.6 kPa,with a median value of 59.4 kPa and most values falling between 50 kPa and 75 kPa.The estimated stress drops show significant spatial variations.Lower stress drops were mainly found close to the mainshock and on the seismogenic fault plane with large coseismic slip.In contrast,the highest stress drop was 7.1 MPa for the mainshock,and relatively large stress drops were also found for aftershocks away from the major seismogenic fault and at depths deeper than the zone with large coseismic slip.By using a statistical method,we found self-similarity among some of the aftershocks with a nearly constant stress drop.In contrast,the stress drop increased with the seismic moment for other aftershocks.The amount of stress released during earthquakes is a fundamental characteristic of the earthquake rupture process.As such,the stress drop represents a key parameter for improving our understanding of earthquake source physics.
基金supported by the National Key Research and Development Program of China (grant 2017YFC0601206)the National Natural Science Foundation of China (grants 41674060 and 41630210)
文摘The seismological characteristics of the 15 February 2013 Chelyabinsk bolide explosion are investigated based on seismograms recorded at 50 stations with epicentral distances ranging from 229 to 4324 km. By using 8–25 s vertical-component Rayleigh waveforms,we obtain a surface-wave magnitude of 4.17±0.31 for this event. According to the relationship among the Rayleigh-wave magnitude,burst height and explosive yield, the explosion yield is estimated to be 686 kt. Using a single-force source to fit the observed Rayleigh waveforms, we obtain a single force of 1.03×10^(12) N, which is equivalent to the impact from the shock wave generated by the bolide explosion.
基金funded by the National Natural Science Foundation of China(No.41374006 and 41274117)
文摘Seismic migration moves reflections to their true subsurface positions and yields seismic images of subsurface areas. However, due to limited acquisition aperture, complex overburden structure and target dipping angle, the migration often generates a distorted image of the actual subsurface structure. Seismic illumination and resolution analyses provide a quantitative description of how the above-mentioned factors distort the image. The point spread function (PSF) gives the resolution of the depth image and carries full information about the factors affecting the quality of the image. The staining algorithm establishes a correspondence between a certain structure and its relevant wavefield and reflected data. In this paper, we use the staining algorithm to calculate the PSFs, then use these PSFs for extracting the acquisition dip response and correcting the original depth image by deconvolution. We present relevant results of the SEG salt model. The staining algorithm provides an efficient tool for calculating the PSF and for conducting broadband seismic illumination and resolution analyses.
文摘The discrete time wavelet transform has been used to develop software that detects seismic P and S-phases. The detection algorithm is based on the enhanced amplitude and polarization information provided by the wavelet transform coefficients of the raw seismic data. The algorithm detects phases, determines arrival times and indicates the seismic event direction from three component seismic data that represents the ground displacement in three orthogonal directions. The essential concept is that strong features of the seismic signal are present in the wavelet coefficients across several scales of time and direction. The P-phase is detected by generating a function using polarization information while S-phase is detected by generating a function based on the transverse to radial amplitude ratio. These functions are shown to be very effective metrics in detecting P and S-phases and for determining their arrival times for low signal-to-noise arrivals. Results are compared with arrival times obtained by a human analyst as well as with a standard STA/LTA algorithm from local and regional earthquakes and found to be consistent.
基金Acknowledgements This study is supported by the Marine Public Welfare Industry Program of State Oceanic Administration (Grant No. 201005005). Yan LI from the First Institute of Oceanography, SOA, is appreciated for her work on partial calculations. Dr. Yu LIU, School of Marine Sciences, Nanjing University of Information Science & Technology, is appreciated for his valuable help in coordinating the running of ROMS. Thanks to Philipp Wu from the University of California, Berkeley for his help in proofreading the manuscript. CD appreciates the support from the National Natural Science Foundation of China (Grant Nos. 41476022, 41490643, and 91128204), Startup Foundation for Introducing Talent of Nanjing University of Information Science & Technology (2013r121and 2014r072), Program for Innovation Research and Entrepreneurship team in Jiangsu Province, National Basic Research Program of China (No. 2014CB745000), and National Programme on Global Change and Air-Sea Interaction (No. GASI- 03-IPOVAI-05).
文摘Submarine sand waves, vital to seabed stability, are an important consideration for oceanic engineering projects such as oil pipe lines and submarine cables. The properties of surface sediment and the evolvement of submarine sand waves in a specified area in the South China Sea are studied using both a hydrological model and field observational data. The bottom flow field data between 2010 and 2011 in the study area are simulated by the Regional Ocean Model System (ROMS). The migration of submarine sand waves is calculated using Rubin's formula along with typhoon data and bottom flow field data, which allows for the analysis of sand wave response under the influence of typhoons. The migration direction calculated by Rubin's formula and bottom flow are very similar to collected data. The migration distance of different positions is between 0.0 m and 21.8 m, which reciprocates cumulatively. This shows that Rubin's formula can predict the progress of submarine sand waves with the bottom flow simulated by ROMS. The migration distances of 2 sites in the study area are 2.0 m and 2.9 m during the typhoon "Fanapi". The proportion of the calculated migration distance by the typhoon is 9.17% and 26.36% of the annual migration distance, respectively, which proves that the typhoon can make a significant impact on submarine sand waves.
文摘In order to isolate magnetic signals carried by single-domain (SD) ferrimagnetic (FM) minerals from multi-domain (MD) FM minerals, we developed a few pa- rameters using partial anhysteretic remanent magnetization (pARM). Because MD fraction contains only soft (easy to be demagnetized) coercivity spectrum, pARM(>20 mT) was sensitive in eliminating MD contributions. Ratio of pARM(5 mT, 10 mT)/pARM(0, 5 mT) is useful in quantifying a rela- tive abundance of mass ratio between SD and MD fractions. These new proxies can quickly characterize the details of grain size distribution of magnetic minerals in paleoclimatic and paleomagnetic studies.
基金China University of Geosciences (Beijing)a Changjiang Fellowship from the Chinese Ministry of Education awarded to Yin An
文摘The Himalayan orogen consists of three major lithologic units that are separated by two major north-dipping faults: the Lesser Himalayan Sequence (LHS) below the Main Central Thrust (MCT), the Greater Himalayan Crystalline Complex (GHC) above the MCT, and the Tethyan Himalayan Sequence (THS) juxtaposed by the South Tibet Detachment fault (STD) over the GHC. Due to widespread meta-morphism and intense deformation, differentiating the above three lithologic units is often difficult. This problem has been overcome by the use of Sm-Nd isotopic analysis. The previous studies suggested that the LHS can be clearly distinguished from the GHC and THS by their Nd isotope compositions. However, the lack of detailed and systematic Sm-Nd isotopic studies of the THS across the Himalaya in general has made differentiation of this unit from the nearby GHC impossible, as the two appear to share overlapping Nd compositions and model ages. To address this problem, we systematically sam-pled and analyzed Nd isotopes of the THS in southeastern Tibet directly north of Bhutan. Our study identifies two distinctive fields in a εNd -TDM plot. The first is defined by the εNd(210 Ma) values of -3.45 to -7.34 and TDM values of 1.15 to 1.29 Ga from a Late Triassic turbidite sequence, which are broadly similar to those obtained from the Lhasa block. The second field is derived from the Early Cretaceous meta-sedimentary rocks with εNd(130 Ma) values from -15.24 to -16.61 and TDM values from 1.63 to 2.00 Ga; these values are similar to those obtained from the Greater Himalayan Crystalline Complex in Bhutan directly south of our sampling traverse, which has εNd(130 Ma) values of -10.89 to -16.32 and Nd model ages (TDM) of 1.73 to 2.20 Ga. From the above observations, we suggest that the Late Triassic strata of the southeast Tibetan THS were derived from the Lhasa block in the north, while the Early Cretaceous strata of the THS were derived from a source similar to the High Himalayan Crystalline Complex or Indian craton in the south. Our interpretation is consistent with the existing palaeocurrent data and provenance analysis of the Late Triassic strata in southeastern Tibet, which indicate the sediments derived from a northern source. Thus, we suggest that the Lhasa terrane and the Indian craton were close to one another in the Late Triassic and were separated by a rift valley across which a large submarine fan was transported southward and deposited on the future northern margin of the Indian continent.
基金supported by the National Natural Science Foundation of China(40974099,40731054,40704027 and 40921063)the Specialized Research Fund for State Key Laboratories and the National Basic Research Program of China(2011CB811404)
文摘Low frequency electromagnetic fluctuations in the vicinity of a magnetospheric substorm onset were investigated using simultaneous observations by THEMIS multiple probes in the near-Earth plasma sheet in the magnetotail.The observations indicate that in the vicinity of a substorm onset,kinetic Alfvén waves can be excited in the high-βplasma sheet(β=2μ0nT/B 2 ,the ratio of plasma thermal pressure to magnetic pressure)within the near-Earth magnetotail.The kinetic Alfvén wave has a small spatial scale in the high-βplasma.The parallel electric field accompanying kinetic Alfvén waves accelerates the charged particles along the magnetic field.The kinetic Alfvén waves play an important role in the substorm trigger process,and possibly in the formation of a substorm current wedge.
基金supported by the National Basic Research Program of China(2014CB845903,2012CB825604)the National Natural Science Foundation of China(41211120176,41274167,41031065,41374166,41330104,41374171)+2 种基金the National R&D Projectsfor Key Scientific Instruments(ZDYZ2012-1-01)UK Science and Technology Facilities Council grant(ST/L005638/1)at UCL/MSSLChina Postdoctoral Science Foundation(2014M550826)
文摘Using in situ observations from THEMIS A, D and E during the 2008–2011 tail season, we present a statistical study of the evolution of pressure gradients in the near-Earth tail during bursty bulk flow(BBF) convection.We identified 138 substorm BBFs and 2,197 non-substorm BBFs for this study. We found that both the pressure and the BZcomponent of the magnetic field were enhanced at the arrival of BBFs at the spacecraft locations. We suggest that the increase of BZduring non-substorm BBFs is associated with flux pile-up. However, the much stronger enhancement of BZduring substorm BBFs implies the occurrence of magnetic field dipolarization which is caused by both the flux pile-up process and near-Earth current disruption. Furthermore, a bow-wave-like high pressure appears to be formed at the arrival of substorm BBFs,which is responsible for the formation of region-1-sense FACs. The azimuthal pressure gradient associated with the arrival of substorm BBFs lasts for about 5 min. The enhanced pressure gradient associated with the bow waveis caused by the braking and diversion of the Earthward flow in the inner plasma sheet. The results from this statistical study suggest that the braking and azimuthal diversion of BBFs may commonly create azimuthal pressure gradients, which are related to the formation of the FAC of the substorm current wedge.
基金supported by the National Natural Science Foundation of China (NSFC) under grant 41774154 and 41504123the Science Foundation of Jiangxi Province under grant 20122BAB21 2002+1 种基金the Nanchang University graduate innovation special fund project under grant CX2017106the Key Industry Innovation Chain of Shaanxi under grant 2018JQ4032
文摘Previous studies suggest that dipolarization fronts (DFs) are 1 to 3RE (RE is the earth radius) wide in the dawn-dusk direction. Recent kinetic simulations have found that DFs may break up into small-scale structures after they are produced by reconnection. Motivated by this simulation, we revisited the scale size of DFs in the dawn-dusk direction by using Cluster observations during the years when the inter-distance among Cluster spacecraft was between 1000 and 2000 km. We selected the DFs that were detected by more than one spacecraft and estimated the radii of these DFs by a simple geometrical analysis, which is based on comparison of DF normals observed by different spacecraft. We found a few DFs that were only a few ion inertial lengths in the dawn-dusk direction. These results point out the importance of multi-scale coupling during the evolution of DFs.
文摘In land seismic exploration,strong near-surface heterogeneities can cause serious problems in seismic data acquisition and the quality of depth imaging.By introducing random velocity models to simulate velocity fluctuations in the near-surface layer and using the point spread function to characterize image quality,we examine how the scattering generated in near-surface heterogeneities can affect the subsurface image.In addition to the commonly known scattering noises which lower the signal to noise ratio in seismic data,our results also reveal that intermediate scale hetero-geneities generate forward scattering which forms phase or travel time fluctuations.Due to intermediate-scale uncertainty in the shallow part of the migration velocity model,these phase changes are carried to the target by the extrapolated wavefields,breaking the zero phase image condition at the image point.This is a primary reason for deteriorated image quality in regions with strong near-surface scattering.If this intermediate-scale information can be obtained and built into the migration velocity,the subsurface image quality can be largely improved.These results can be the ba-sis for further numerical investigations and field experiments.The proposed analysis method can also be used to evaluate other potential methods for dealing with near-surface scattering.
基金supported by the National Key Research and Development Program of China (2017YFC0601206)the National Natural Science Foundation of China (41974061,41974054)。
文摘The Altai orogen is a typical intracontinental orogen in Central Asia that experienced far-field deformation associated with Indian-Eurasian plate convergence. This region is characterized by uplift comparable to that of the Tianshan Mountains but has a distinct strain rate. Half of the Indo-Asia strain is accommodated by the Tianshan Mountains, whereas the Altai Mountains accommodates only 10%. To elucidate how the Altai Mountains produced such a large amount of uplift with only one-fifth of the strain rate of the Tianshan Mountains, we constructed a detailed crustal image of the Altai Mountains based on a new 166.8-km deep seismic reflection profile. The prestack migration images reveal an antiform within the Erqis crust, an ~10 km Moho offset between the Altai arc and the East Junggar area, and a major south-dipping(30° dip) thrust in the lower crust beneath the Altai Mountains, which is connected to the Moho offset. The south-dipping thrust not only records the southward subduction of the Ob-Zaisan Ocean in the Paleozoic but also controlled the Altai deformation pattern in the Cenozoic with the Erqis antiform. The Erqis antiform prevented the extension of deformation to the Junggar crust. The southdipping thrust in the lower crust of the Altai area caused extrusion of the lower crust, generating uplift at the surface, thickening of the crust, and steep(~10 km) Moho deepening in the Altai Mountains. This process significantly widened the deformation zone of the Altai Mountains. These findings provide a new geodynamic model for describing how inherited crustal structure controls intraplate deformation without strong horizontal stress.