Chickpea (Cicer airetinum L.) is an important and most preferred food legume in many parts of the world especially in the Indian sub-continent. Molecular analysis of chickpea using DNA technology has been carried out ...Chickpea (Cicer airetinum L.) is an important and most preferred food legume in many parts of the world especially in the Indian sub-continent. Molecular analysis of chickpea using DNA technology has been carried out to identify the diverse genetic base of the cultivars for selected preferential introductions as efficient edible elements. A few of these genetic stocks have been documented here to tap their genetic diversity. The status shows that the level of polymorphism in this species is low. Using PCR based markers, marker assisted selection of polymorphy is one of the established techniques. Here, this procedure has been employed to expedite gene/QTL pyramiding in the chickpea. The study presented here includes analysis of 12 germplasms of chickpea. Standard CTAB method has been performed, with certain modifications, to get better intensity and resolution of DNA bands. Extracted DNA, amplified with 41 RAPD and 21 ISSR primers are thereby tested to determine genetic diversity. The presentation discusses the results of chickpea germplasm diversity on the basis of these observations.展开更多
In this editorial,we comment on the article by Zhou et al.The study reveals the connection between ferroptosis and pyroptosis and the effect of silent information regulator sirtuin 1(SIRT1)activation in acute liver fa...In this editorial,we comment on the article by Zhou et al.The study reveals the connection between ferroptosis and pyroptosis and the effect of silent information regulator sirtuin 1(SIRT1)activation in acute liver failure(ALF).ALF is characterized by a sudden and severe liver injury resulting in significant hepatocyte damage,often posing a high risk of mortality.The predominant form of hepatic cell death in ALF involves apoptosis,ferroptosis,autophagy,pyroptosis,and necroptosis.Glutathione peroxidase 4(GPX4)inhibition sensitizes the cell to ferroptosis and triggers cell death,while Gasdermin D(GSDMD)is a mediator of pyroptosis.The study showed that ferroptosis and pyroptosis in ALF are regulated by blocking the p53/GPX4/GSDMD pathway,bridging the gap between the two processes.The inhibition of p53 elevates the levels of GPX4,reducing the levels of inflammatory and liver injury markers,ferroptotic events,and GSDMDN protein levels.Reduced p53 expression and increased GPX4 on deletion of GSDMD indicated ferroptosis and pyroptosis interaction.SIRT1 is a NAD-dependent deacetylase,and its activation attenuates liver injury and inflammation,accompanied by reduced ferroptosis and pyroptosis-related proteins in ALF.SIRT1 activation also inhibits the p53/GPX4/GSDMD axis by inducing p53 acetylation,attenuating LPS/D-GalN-induced ALF.展开更多
Hepatocellular carcinoma(HCC)is the most common type of liver cancer worldwide.Viral hepatitis is a significant risk factor for HCC,although metabolic syndrome and diabetes are more frequently associated with the HCC....Hepatocellular carcinoma(HCC)is the most common type of liver cancer worldwide.Viral hepatitis is a significant risk factor for HCC,although metabolic syndrome and diabetes are more frequently associated with the HCC.With increasing prevalence,there is expected to be>1 million cases annually by 2025.Therefore,there is an urgent need to establish potential therapeutic targets to cure this disease.Peroxisome-proliferator-activated receptor gamma(PPARγ)is a ligand-activated transcription factor that plays a crucial role in the pathophysiology of HCC.Many synthetic agonists of PPARγsuppress HCC in experimental studies and clinical trials.These synthetic agonists have shown promising results by inducing cell cycle arrest and apoptosis in HCC cells and preventing the invasion and metastasis of HCC.However,some synthetic agonists also pose severe side effects in addition to their therapeutic efficacy.Thus natural PPARγagonists can be an alternative to exploit this potential target for HCC treatment.In this review,the regulatory role of PPARγin the pathogenesis of HCC is elucidated.Furthermore,the experimental and clinical scenario of both synthetic and natural PPARγagonists against HCC is discussed.Most of the available literature advocates PPARγas a potential therapeutic target for the treatment of HCC.展开更多
文摘Chickpea (Cicer airetinum L.) is an important and most preferred food legume in many parts of the world especially in the Indian sub-continent. Molecular analysis of chickpea using DNA technology has been carried out to identify the diverse genetic base of the cultivars for selected preferential introductions as efficient edible elements. A few of these genetic stocks have been documented here to tap their genetic diversity. The status shows that the level of polymorphism in this species is low. Using PCR based markers, marker assisted selection of polymorphy is one of the established techniques. Here, this procedure has been employed to expedite gene/QTL pyramiding in the chickpea. The study presented here includes analysis of 12 germplasms of chickpea. Standard CTAB method has been performed, with certain modifications, to get better intensity and resolution of DNA bands. Extracted DNA, amplified with 41 RAPD and 21 ISSR primers are thereby tested to determine genetic diversity. The presentation discusses the results of chickpea germplasm diversity on the basis of these observations.
文摘In this editorial,we comment on the article by Zhou et al.The study reveals the connection between ferroptosis and pyroptosis and the effect of silent information regulator sirtuin 1(SIRT1)activation in acute liver failure(ALF).ALF is characterized by a sudden and severe liver injury resulting in significant hepatocyte damage,often posing a high risk of mortality.The predominant form of hepatic cell death in ALF involves apoptosis,ferroptosis,autophagy,pyroptosis,and necroptosis.Glutathione peroxidase 4(GPX4)inhibition sensitizes the cell to ferroptosis and triggers cell death,while Gasdermin D(GSDMD)is a mediator of pyroptosis.The study showed that ferroptosis and pyroptosis in ALF are regulated by blocking the p53/GPX4/GSDMD pathway,bridging the gap between the two processes.The inhibition of p53 elevates the levels of GPX4,reducing the levels of inflammatory and liver injury markers,ferroptotic events,and GSDMDN protein levels.Reduced p53 expression and increased GPX4 on deletion of GSDMD indicated ferroptosis and pyroptosis interaction.SIRT1 is a NAD-dependent deacetylase,and its activation attenuates liver injury and inflammation,accompanied by reduced ferroptosis and pyroptosis-related proteins in ALF.SIRT1 activation also inhibits the p53/GPX4/GSDMD axis by inducing p53 acetylation,attenuating LPS/D-GalN-induced ALF.
文摘Hepatocellular carcinoma(HCC)is the most common type of liver cancer worldwide.Viral hepatitis is a significant risk factor for HCC,although metabolic syndrome and diabetes are more frequently associated with the HCC.With increasing prevalence,there is expected to be>1 million cases annually by 2025.Therefore,there is an urgent need to establish potential therapeutic targets to cure this disease.Peroxisome-proliferator-activated receptor gamma(PPARγ)is a ligand-activated transcription factor that plays a crucial role in the pathophysiology of HCC.Many synthetic agonists of PPARγsuppress HCC in experimental studies and clinical trials.These synthetic agonists have shown promising results by inducing cell cycle arrest and apoptosis in HCC cells and preventing the invasion and metastasis of HCC.However,some synthetic agonists also pose severe side effects in addition to their therapeutic efficacy.Thus natural PPARγagonists can be an alternative to exploit this potential target for HCC treatment.In this review,the regulatory role of PPARγin the pathogenesis of HCC is elucidated.Furthermore,the experimental and clinical scenario of both synthetic and natural PPARγagonists against HCC is discussed.Most of the available literature advocates PPARγas a potential therapeutic target for the treatment of HCC.