This paper is concerned with the following n-th ordinary differential equation:{u~(n)(t)=f(t,u(t),u~(1)(t),···,u~(n-1) (t)),for t∈(0,1),u~(i) (0)=0,0 ≤i≤n3,au~(n-2)(0)du~(n-1)(0)=0,cu~(n-2)(1)...This paper is concerned with the following n-th ordinary differential equation:{u~(n)(t)=f(t,u(t),u~(1)(t),···,u~(n-1) (t)),for t∈(0,1),u~(i) (0)=0,0 ≤i≤n3,au~(n-2)(0)du~(n-1)(0)=0,cu~(n-2)(1)+du~(n-1)(1)=0,where a,c ∈ R,,≥,such that a~2 + b~2 >0 and c~2+d~2>0,n ≥ 2,f:[0,1] × R → R is a continuous function.Assume that f satisfies one-sided Nagumo condition,the existence theorems of solutions of the boundary value problem for the n-th-order nonlinear differential equations above are established by using Leray-Schauder degree theory,lower and upper solutions,a priori estimate technique.展开更多
文摘This paper is concerned with the following n-th ordinary differential equation:{u~(n)(t)=f(t,u(t),u~(1)(t),···,u~(n-1) (t)),for t∈(0,1),u~(i) (0)=0,0 ≤i≤n3,au~(n-2)(0)du~(n-1)(0)=0,cu~(n-2)(1)+du~(n-1)(1)=0,where a,c ∈ R,,≥,such that a~2 + b~2 >0 and c~2+d~2>0,n ≥ 2,f:[0,1] × R → R is a continuous function.Assume that f satisfies one-sided Nagumo condition,the existence theorems of solutions of the boundary value problem for the n-th-order nonlinear differential equations above are established by using Leray-Schauder degree theory,lower and upper solutions,a priori estimate technique.