期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Mechanical Properties of Remote-Laser Cut CFRP and Thermographic Laser-Process Monitoring
1
作者 Michael Rose Sebastian Schettler +2 位作者 Florian Klemm Eckhard Beyer Martina Zimmermann 《Materials Sciences and Applications》 2020年第8期560-575,共16页
Remote-laser beam cutting is a productive technology without tool wear. Especially when cutting carbon fiber reinforced polymers (CFRP), it offers constant manufacturing quality. Since it is a thermal process, a heat-... Remote-laser beam cutting is a productive technology without tool wear. Especially when cutting carbon fiber reinforced polymers (CFRP), it offers constant manufacturing quality. Since it is a thermal process, a heat-affected zone (HAZ) is formed at the edge of the cut. Based on quasi-static and cyclic mechanical tests on open-hole specimens, the influence of the process on the mechanical properties of CFRP is shown. The quasi-static tests are in good correlation with results from other researchers by indicating an increase in the maximum tensile stress of the test specimens, cut by remote-laser. The reason is the rearrangement of the shear stresses and a reduction of the notch stress concentration. However, the results of the present study show that excessive expansion of the HAZ leads to a reduction in the maximum tensile stress compared to milled test specimens. Under cyclic load conditions, remote-laser beam cutting does not lead to a more pronounced degradation than milling. The mechanical properties of the notched test pieces are sensitive to the expansion of the HAZ. For the production of components it is therefore necessary that the remote-laser beam cutting is carried out under controlled and documentable conditions. For this purpose, process thermography was tested as a tool for quality assurance. The results show that the technology is basically suitable for this task. 展开更多
关键词 CFRP Remote Laser Cutting Fatigue Process Thermography Process Monitoring
下载PDF
Measurement of Collision Conditions in Magnetic Pulse Welding Processes
2
作者 Joerg Bellmann Eckhard Beyer +3 位作者 Joem Lueg-Althoff Soeren Gies A. Erman Tekkaya Sebastian Schulze 《Journal of Physical Science and Application》 2017年第4期1-10,共10页
关键词 光学测量技术 碰撞条件 焊接过程 磁脉冲 多普勒测速仪 金属连接 高速碰撞 速度分量
下载PDF
Targeting new ways for large-scale,high-speed surface functionalization using direct laser interference patterning in a roll-to-roll process
3
作者 Christoph Zwahr Nicolas Serey +5 位作者 Lukas Nitschke Christian Bischoff Ulrich Radel Alexandra Meyer Penghui Zhu Wilhelm Pfleging 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第3期569-583,共15页
Direct Laser Interference Patterning(DLIP)is used to texture current collector foils in a roll-to-roll process using a high-power picosecond pulsed laser system operating at either fundamental wavelength of 1064 nm or... Direct Laser Interference Patterning(DLIP)is used to texture current collector foils in a roll-to-roll process using a high-power picosecond pulsed laser system operating at either fundamental wavelength of 1064 nm or 2nd harmonic of 532 nm.The raw beam having a diameter of 3 mm@1/e^(2) is shaped into an elongated top-hat intensity profile using a diffractive so-called FBS■-L element and cylindrical telescopes.The shaped beam is split into its diffraction orders,where the two first orders are parallelized and guided into a galvanometer scanner.The deflected beams inside the scan head are recombined with an F-theta objective on the working position generating the interference pattern.The DLIP spot has a line-like interference pattern with about 15μm spatial period.Laser fluences of up to 8 J cm^(-2) were achieved using a maximum pulse energy of 0.6 mJ.Furthermore,an in-house built roll-to-roll machine was developed.Using this setup,aluminum and copper foil of 20μm and 9μm thickness,respectively,could be processed.Subsequently to current collector structuring coating of composite electrode material took place.In case of lithium nickel manganese cobalt oxide(NMC 622)cathode deposited onto textured aluminum current collector,an increased specific discharge capacity could be achieved at a C-rate of 1℃.For the silicon/graphite anode material deposited onto textured copper current collector,an improved rate capability at all C-rates between C/10 and 5℃ was achieved.The rate capability was increased up to 100%compared to reference material.At C-rates between C/2 and 2℃,the specific discharge capacity was increased to 200 mAh g^(-1),while the reference electrodes with untextured current collector foils provided a specific discharge capacity of 100 m Ah g^(-1),showing the potential of the DLIP technology for cost-effective production of battery cells with increased cycle lifetime. 展开更多
关键词 DLIP lithium-ion battery surface texturing copper aluminum
下载PDF
Measurement and analysis technologies for magnetic pulse welding: established methods and new strategies
4
作者 J. Bellmann J. Lueg-Althoff +3 位作者 S. Schulze S. Gies E. Beyer A. E. Tekkaya 《Advances in Manufacturing》 SCIE CAS CSCD 2016年第4期322-339,共18页
Magnetic pulse welding (MPW) is a fast and clean joining technique that offers the possibility to weld dissimilar metals, e.g., aluminum and steel. The high-speed collision of the joining partners is used to generat... Magnetic pulse welding (MPW) is a fast and clean joining technique that offers the possibility to weld dissimilar metals, e.g., aluminum and steel. The high-speed collision of the joining partners is used to generate strong atomic bonded areas. Critical brittle intermetallic phases can be avoided due to the absence of external heat. These features attract the notice of industries performing large scale productions of dissimilar metal joints, like automo- tive and plant engineering. The most important issue is to guarantee a proper weld quality. Numerical simulations are often used to predict the welding result a priori. Nevertheless, experiments and the measurement of process parameters are needed for the validation of these data. Sensors nearby the joining zone are exposed to high pressures and intense magnetic fields which hinder the evaluation of the electrical output signals. In this paper, existing analysis tools for process development and quality assurance in MPW are reviewed. New methods for the process monitoring and weld characterization during and after MPW are introduced, which help to overcome the mentioned drawbacks of established technologies. These methods are based on optical and mechanical measuring technologies taking advantage of the hypervelocity impact flash, the impact pressure and the deformation necessary for the weld formation. 展开更多
关键词 Magnetic pulse welding (MPW) Processmonitoring Collision conditions Dissimilar metaljoining Materials testing
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部