The crystallization, microstructure, and soft magnetic properties of Fe52Co34Hf7B6Cul alloy are studied. Amorphous Fe52Co34Hf7B6Cul alloys are first treated by a pulsed magnetic field with a medium frequency, and then...The crystallization, microstructure, and soft magnetic properties of Fe52Co34Hf7B6Cul alloy are studied. Amorphous Fe52Co34Hf7B6Cul alloys are first treated by a pulsed magnetic field with a medium frequency, and then annealed at 100 ℃-400 ℃ for 30 min in a vacuum. The rise in temperature during the treatment by a pulsed magnetic field is measured by a non-contact infrared thermometer. The soft magnetic properties of specimens are measured by a vibrating sample magnetometer (VSM). The microstructure changes of specimens are observed by a MSssbauer spectroscopy and transmission electron microscope (TEM). The results show the medium-frequency pulsating magnetic field will pro- mote nanocrystallization of the amorphous alloy with a lower temperature rise. The nanocrystalline phase is (α-Fe(Co) with bcc crystal structure, and the grain size is about 10 nm. After vacuum annealing at 100 ℃ for 30 min, scattering nanocrystalline phases become more uniform, the coercive force and the saturation magnetization of the specimens are 41.98 A/m and 185.15 emu/g.展开更多
The magnetocaloric effect (MCE) in many rare earth (RE) based intermetallic compounds has been extensively in- vestigated during the last two decades, not only due to their potential applications for magnetic refr...The magnetocaloric effect (MCE) in many rare earth (RE) based intermetallic compounds has been extensively in- vestigated during the last two decades, not only due to their potential applications for magnetic refrigeration but also for better understanding of the fundamental problems of the materials. This paper reviews our recent progress on studying the magnetic properties and MCE in some binary or ternary intermetallic compounds of RE with low boiling point metal(s) (Zn, Mg, and Cd). Some of them exhibit promising MCE properties, which make them attractive for low temperature magnetic refrigeration. Characteristics of the magnetic transition, origin of large MCE, as well as the potential application of these compounds are thoroughly discussed. Additionally, a brief review of the magnetic and magnetocaloric properties in the quaternary rare earth nickel boroncarbides RENi2B2C superconductors is also presented.展开更多
Within the framework of the embedded-atom method, we performed molecular-dynamics calculations to investigate the structural transformation during melting of two copper clus- ters containing 57 and 58 atoms. The simul...Within the framework of the embedded-atom method, we performed molecular-dynamics calculations to investigate the structural transformation during melting of two copper clus- ters containing 57 and 58 atoms. The simulation results reveal how their different structural changes can strongly influence internal energy and radial distribution functions. The local structural patterns of different regions during the temperature increase, determined by atom density profiles, are identified for the melting of each cluster. The simulations show sensi- tivities of the structural changes for these two small size clusters with different structures.展开更多
The differences in structural change between Au225 and Au369 clusters with their (111) facets supported on MgO(100) surfaces at 5 K are studied by using molecular-dynamics simulations with the atomic interchange p...The differences in structural change between Au225 and Au369 clusters with their (111) facets supported on MgO(100) surfaces at 5 K are studied by using molecular-dynamics simulations with the atomic interchange potentials of the Au/MgO interface. The parameters are obtained from the ab initio energies using the Chen-MSbius inversion method. Analyses of the pair distribution functions show that the two Au clusters use different deformation processes to adjust the distances between the interface atoms, owing to the misfit between the atom distances among the clusters and the substrates. The local structural changes are identified by atomic density profiles.展开更多
Developing high efficient Pd-based electrocatalysts for oxygen reduction reaction(ORR) is still challenging for alkaline membrane fuel cell,since the strong oxygen adsorption energy and easy agglomerative intrinsic pr...Developing high efficient Pd-based electrocatalysts for oxygen reduction reaction(ORR) is still challenging for alkaline membrane fuel cell,since the strong oxygen adsorption energy and easy agglomerative intrinsic properties. In order to simultaneously solve these problems, Pd/Co_(3)O_(4)–N–C multidimensional materials with porous structures is designed as the ORR catalysts. In details, the ZIF-67 with polyhedral structure was firstly synthesized and then annealed at high-temperature to prepare the N-doped Co_(3)O_(4)carbon-based material, which was used to homogeneously confine Pd nanoparticles and obtained the Pd/Co_(3)O_(4)–N–C series catalysts. The formation of Co–N and C–N bond could provide efficient active sites for ORR. Simultaneously, the strong electronic interaction in the interface between the Pd and N-doped Co_(3)O_(4)could disperse and avoid the agglomeration of Pd nanoparticles and ensure the exposure of active sites, which is crucial to lower the energy barrier toward ORR and substantially enhance the ORR kinetics. Hence, the Pd/Co_(3)O_(4)–N–C nanocompounds exhibited excellent ORR catalytic performance, ideal Pd mass activity, and durability in 0.1 mol L-1KOH solution compared with Co_(3)O_(4)–N–C and Pd/C. The scalable synthesis method, relatively low cost, and excellent electrochemical ORR performance indicated that the obtained Pd/Co_(3)O_(4)–N–C electrocatalyst had the potential for application on fuel cells.展开更多
Converting sustainable solar energy into hydrogen energy over semiconductor-based photocatalytic materials provides an alternative to fossil fuel consumption.However,efficient photocatalytic splitting of water to real...Converting sustainable solar energy into hydrogen energy over semiconductor-based photocatalytic materials provides an alternative to fossil fuel consumption.However,efficient photocatalytic splitting of water to realize carbon-free hydrogen production remains a challenge.Heterojunction photocatalysts with well-defined dimensionality and perfectly matched interfaces are promising for achieving highly efficient solar-to-hydrogen conversion.Herein,we report the fabrication of a novel type of protonated graphitic carbon nitride(PCN)/Ti3C2 MXene heterojunctions with strong interfacial interactions.As expected,the two-dimensional(2D)PCN/2D Ti3C2 MXene interface heterojunction achieves a highly improved hydrogen evolution rate(2181μmol∙g‒1)in comparison with bulk g-C3N4(393μmol∙g‒1)and protonated g-C3N4(816μmol∙g‒1).The charge-regulated surfaces of PCN and the accelerated charge transport at the face-to-face 2D/2D Schottky heterojunction interface are the major contributors to the excellent hydrogen evolution performance of the composite photocatalyst.展开更多
An electrochemical technique has been introduced and applied to fabricate superconducting MgB2 films in molten salts. MgCl2, Mg(BO2)2, NaCl, and KCl were used as electrolyte, graphite was used as the anode, and copp...An electrochemical technique has been introduced and applied to fabricate superconducting MgB2 films in molten salts. MgCl2, Mg(BO2)2, NaCl, and KCl were used as electrolyte, graphite was used as the anode, and copper was used as the cathode, respectively. X-ray diffraction (XRD) analysis was chosen to investigate the phase composition and crystallinity of the films at different electrolysis temperatures. Stan- dard four-probe technique and SQUID were applied to investigate the temperature dependence of resistance (R-T) properties and magnetic properties of the films, respectively. The results indicate that MgB2 films have been fabricated on the copper cathodes, and superconducting transition takes place close to 50 K.展开更多
Three coalescence processes of Cu57-Cu57, Cu57-Cu58, and Cu5s Cu58 clusters at 300 K are investigated by employing molecular dynamics simulations. According to the evolutions of mean square displacement and local atom...Three coalescence processes of Cu57-Cu57, Cu57-Cu58, and Cu5s Cu58 clusters at 300 K are investigated by employing molecular dynamics simulations. According to the evolutions of mean square displacement and local atom packing, the coalescence process can be separated into three stages including an approaching stage, a coalescing stage, and a coalesced stage. The simulations show that the coalescence processes and the formed products are sensitive to the respective initial structures of, and the relative configuration between, the two coalescing icosahedron-based clusters.展开更多
The microstructures of the Saxidomus purpuratus shell were observed.It was found that the inner and middle layers of the shell are composed of crossed lamellae,while the outer layer exhibits porous structures.With the...The microstructures of the Saxidomus purpuratus shell were observed.It was found that the inner and middle layers of the shell are composed of crossed lamellae,while the outer layer exhibits porous structures.With the characteristic structure of each layer,the hardness of inner layer with narrow domains in crossed lamellar structure is the highest,and that of middle layer with wide domains is lower,while the outer layer has the lowest hardness.The damage morphologies of the indentations change a lot,depending not only upon the magnitude of the indentation load,but also upon the orientation between the indentation direction and the crossed lamellae in the microstructure of the shell,which illustrates the anisotropy in mechanical properties of such shells.展开更多
To explore the coupled effect of temperature T and strain rate ε on the deformation features of AZ31 Mg alloy, mechanical behaviors and microstructural evolutions as well as surface deformation and damage features we...To explore the coupled effect of temperature T and strain rate ε on the deformation features of AZ31 Mg alloy, mechanical behaviors and microstructural evolutions as well as surface deformation and damage features were system- atically examined under uniaxial tension at T spanning from 298 to 523 K and ε from 10^-4 to 10^-2 s-1. The increase in T or the decrease in ε leads to the marked decrease in flow stress, the appearance of a stress quasi-plateau after an initially rapid strain hardening, and even to the occurrence of successive strain softening. Correspondingly, the plastic deformation modes of AZ31 Mg alloy transform from the predominant twinning and a limited amount of dislocation slip into the enhanced non-basal slip and the dynamic recrystallization (DRX) together with the weakened twinning. Meanwhile, the cracking modes also change from along grain boundaries (GBs) and at twin boundaries (TBs) or the end of twins into nearby GBs where the DRX has occurred. The appearance of a stress quasi-plateau, the formation of large-sized cracks nearby GBs, and the occurrence of continuous strain softening, are intimately related to the enhancement of the non-basal slip and the DRX.展开更多
We reported the magnetic properties and magnetocaloric effects(MCE) of(La0.8Ho0.2)2/3Ca1/3MnO3 and(La0.5Ho0.5)2/3Ca1/3MnO3 nanoparticles by sol-gel technique.With this method,we were able to obtain the samples with pa...We reported the magnetic properties and magnetocaloric effects(MCE) of(La0.8Ho0.2)2/3Ca1/3MnO3 and(La0.5Ho0.5)2/3Ca1/3MnO3 nanoparticles by sol-gel technique.With this method,we were able to obtain the samples with particle diameters ranging from 50 to 200 nm.In the(La1-xHox)2/3Ca1/3MnO3 compound,an external magnetic field induced a magnetic transition from an paramagnetic phase to a ferromagnetic phase above Ts=105-135 K,leading to magnetocaloric effects.The maximum value of ΔSM was 1.19 J/(kg·K) at 100 K and 2.03 J/(kg·K) at 152 K for a magnetic field change of 5 T.Because both samples had large relative cooling power(RCP) and wide δTFWHM,the study on systems with the(La1-xHox)2/3Ca1/3MnO3-related magnetic transitions may open an important field in searching good magnetic materials.展开更多
A self-regulated anti-diabetic drug release device mimicking pancreatic cells is highly desirable for the therapy of diabetes. Herein, a glucose-mediated dual-responsive drug delivery system, which combines pH-and H_(...A self-regulated anti-diabetic drug release device mimicking pancreatic cells is highly desirable for the therapy of diabetes. Herein, a glucose-mediated dual-responsive drug delivery system, which combines pH-and H_(2)O_(2)-responsive block copolymer grafted hollow mesoporous silica nanoparticles(HMSNs)with microneedle(MN) array patch, has been developed to achieve self-regulated administration.The poly[4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl acrylate]-b-poly[2-(dimethylamino)ethyl methacrylate](PPBEM-b-PDM) polymer serves as gate keeper to prevent drug release from the cavity of HMSNs at normoglycemic level. In contrast, the drug release rate is significantly enhanced upon H_(2)O_(2)and pH stimuli due to the chemical change of H_(2)O_(2)sensitive PPBEM block and acid responsive PDM block. Therefore, incorporation of anti-diabetic drug and glucose oxidase(GOx, which can oxidize glucose to gluconic acid and in-situ produce H_(2)O_(2)) into stimulus polymer coated HMSNs results in a glucose-mediated MN device after depositing the drug-loaded nanoparticles into MN array patch. Both in vitro and in vivo results show this MN device presents a glucose mediated self-regulated drug release characteristic, which possesses a rapid drug release at hyperglycemic level but retarded drug release at normoglycemic level. The result indicates that the fabricated smart drug delivery system is a good candidate for the therapy of diabetes.展开更多
Grain boundary engineering(GBE) is a practice of improving resistance to grain boundary failure of the material through increasing the proportion of low Σ coincidence site lattice(CSL) grain boundaries(special g...Grain boundary engineering(GBE) is a practice of improving resistance to grain boundary failure of the material through increasing the proportion of low Σ coincidence site lattice(CSL) grain boundaries(special grain boundaries) in the grain boundary character distribution(GBCD). The GBCD in a cold rolled and annealed Fe-18Cr-18Mn-0.63N high-nitrogen austenitic stainless steel was analyzed by electron back scatter difraction(EBSD). The results show that the optimization process of GBE in the conventional austenitic stainless steel cannot be well applied to this high-nitrogen austenitic stainless steel. The percentage of low ΣCSL grain boundaries could increase from 47.3% for the solid solution treated high-nitrogen austenitic stainless steel specimen to 82.0% for the specimen after 5% cold rolling reduction and then annealing at 1423 K for 10 min.These special boundaries of high proportion efectively interrupt the connectivity of conventional high angle grain boundary network and thus achieve the GBCD optimization for the high-nitrogen austenitic stainless steel.展开更多
To explore the temperature dependence of deformation behavior of BCC structural materials and the relevant effect of pre-annealing, commercially pure iron (CP Fe) produced by equal-channel angular pressing (ECAP) ...To explore the temperature dependence of deformation behavior of BCC structural materials and the relevant effect of pre-annealing, commercially pure iron (CP Fe) produced by equal-channel angular pressing (ECAP) is selected as the experimental material. The influences of deformation temperature T and pre-annealing on deformation behavior, surface deformation characteristics and substructures of ECAP Fe were systematically studied. The results show that ECAP Fe undergoes a remarkable strain softening stage after a rapid strain hardening during uniaxial compression, and the softening degree and the yield strength avs first decrease and then increase with raising temperature. Pre-annealing at 400 ℃ effectively weakens the strain softening degree and increases trys. To understand the influence of deformation temperature on deformation behavior, as well as the relevant pre-annealing effect, deformation and damage characteristics and dislocation structures are studied in detail. In a word, the strain softening of ECAP Fe is associated not only with internal structural instability, but also with temperature, and pre-annealing at 400 ℃ improves high-temperature me- chanical properties of ECAP Fe.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.50771025)
文摘The crystallization, microstructure, and soft magnetic properties of Fe52Co34Hf7B6Cul alloy are studied. Amorphous Fe52Co34Hf7B6Cul alloys are first treated by a pulsed magnetic field with a medium frequency, and then annealed at 100 ℃-400 ℃ for 30 min in a vacuum. The rise in temperature during the treatment by a pulsed magnetic field is measured by a non-contact infrared thermometer. The soft magnetic properties of specimens are measured by a vibrating sample magnetometer (VSM). The microstructure changes of specimens are observed by a MSssbauer spectroscopy and transmission electron microscope (TEM). The results show the medium-frequency pulsating magnetic field will pro- mote nanocrystallization of the amorphous alloy with a lower temperature rise. The nanocrystalline phase is (α-Fe(Co) with bcc crystal structure, and the grain size is about 10 nm. After vacuum annealing at 100 ℃ for 30 min, scattering nanocrystalline phases become more uniform, the coercive force and the saturation magnetization of the specimens are 41.98 A/m and 185.15 emu/g.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11374081 and 11004044)the Fundamental Research Funds for the Central Universities+4 种基金China(Grant Nos.N150905001L1509006and N140901001)the Japan Society for the Promotion of Science Postdoctoral Fellowships for Foreign Researchers(Grant No.P10060)the Alexander von Humboldt(Av H)Foundation(Research stipend to L.Li)
文摘The magnetocaloric effect (MCE) in many rare earth (RE) based intermetallic compounds has been extensively in- vestigated during the last two decades, not only due to their potential applications for magnetic refrigeration but also for better understanding of the fundamental problems of the materials. This paper reviews our recent progress on studying the magnetic properties and MCE in some binary or ternary intermetallic compounds of RE with low boiling point metal(s) (Zn, Mg, and Cd). Some of them exhibit promising MCE properties, which make them attractive for low temperature magnetic refrigeration. Characteristics of the magnetic transition, origin of large MCE, as well as the potential application of these compounds are thoroughly discussed. Additionally, a brief review of the magnetic and magnetocaloric properties in the quaternary rare earth nickel boroncarbides RENi2B2C superconductors is also presented.
文摘Within the framework of the embedded-atom method, we performed molecular-dynamics calculations to investigate the structural transformation during melting of two copper clus- ters containing 57 and 58 atoms. The simulation results reveal how their different structural changes can strongly influence internal energy and radial distribution functions. The local structural patterns of different regions during the temperature increase, determined by atom density profiles, are identified for the melting of each cluster. The simulations show sensi- tivities of the structural changes for these two small size clusters with different structures.
基金Project supported by the State Key Development Program for Basic Research of China (Grant No. 2011CB606403)the Fundamental Research Foundations for the Central Universities,China (Grant No. N90405001)the National Natural Science Foundation of China (Grant No. 51171044)
文摘The differences in structural change between Au225 and Au369 clusters with their (111) facets supported on MgO(100) surfaces at 5 K are studied by using molecular-dynamics simulations with the atomic interchange potentials of the Au/MgO interface. The parameters are obtained from the ab initio energies using the Chen-MSbius inversion method. Analyses of the pair distribution functions show that the two Au clusters use different deformation processes to adjust the distances between the interface atoms, owing to the misfit between the atom distances among the clusters and the substrates. The local structural changes are identified by atomic density profiles.
基金funded by National Natural Science Foundation of China (21975129)Natural Science Foundation of Jiangsu Province (BK20190759)+1 种基金Nanjing Forestry UniversityPostgraduate Research & Practice Innovation Program of Jiangsu Province (SJCX21_0337)。
文摘Developing high efficient Pd-based electrocatalysts for oxygen reduction reaction(ORR) is still challenging for alkaline membrane fuel cell,since the strong oxygen adsorption energy and easy agglomerative intrinsic properties. In order to simultaneously solve these problems, Pd/Co_(3)O_(4)–N–C multidimensional materials with porous structures is designed as the ORR catalysts. In details, the ZIF-67 with polyhedral structure was firstly synthesized and then annealed at high-temperature to prepare the N-doped Co_(3)O_(4)carbon-based material, which was used to homogeneously confine Pd nanoparticles and obtained the Pd/Co_(3)O_(4)–N–C series catalysts. The formation of Co–N and C–N bond could provide efficient active sites for ORR. Simultaneously, the strong electronic interaction in the interface between the Pd and N-doped Co_(3)O_(4)could disperse and avoid the agglomeration of Pd nanoparticles and ensure the exposure of active sites, which is crucial to lower the energy barrier toward ORR and substantially enhance the ORR kinetics. Hence, the Pd/Co_(3)O_(4)–N–C nanocompounds exhibited excellent ORR catalytic performance, ideal Pd mass activity, and durability in 0.1 mol L-1KOH solution compared with Co_(3)O_(4)–N–C and Pd/C. The scalable synthesis method, relatively low cost, and excellent electrochemical ORR performance indicated that the obtained Pd/Co_(3)O_(4)–N–C electrocatalyst had the potential for application on fuel cells.
文摘Converting sustainable solar energy into hydrogen energy over semiconductor-based photocatalytic materials provides an alternative to fossil fuel consumption.However,efficient photocatalytic splitting of water to realize carbon-free hydrogen production remains a challenge.Heterojunction photocatalysts with well-defined dimensionality and perfectly matched interfaces are promising for achieving highly efficient solar-to-hydrogen conversion.Herein,we report the fabrication of a novel type of protonated graphitic carbon nitride(PCN)/Ti3C2 MXene heterojunctions with strong interfacial interactions.As expected,the two-dimensional(2D)PCN/2D Ti3C2 MXene interface heterojunction achieves a highly improved hydrogen evolution rate(2181μmol∙g‒1)in comparison with bulk g-C3N4(393μmol∙g‒1)and protonated g-C3N4(816μmol∙g‒1).The charge-regulated surfaces of PCN and the accelerated charge transport at the face-to-face 2D/2D Schottky heterojunction interface are the major contributors to the excellent hydrogen evolution performance of the composite photocatalyst.
基金the Research Foundation of Science and Technology PlanProject in Liaoning Province of China (Nos.20060623 and 2006402049).
文摘An electrochemical technique has been introduced and applied to fabricate superconducting MgB2 films in molten salts. MgCl2, Mg(BO2)2, NaCl, and KCl were used as electrolyte, graphite was used as the anode, and copper was used as the cathode, respectively. X-ray diffraction (XRD) analysis was chosen to investigate the phase composition and crystallinity of the films at different electrolysis temperatures. Stan- dard four-probe technique and SQUID were applied to investigate the temperature dependence of resistance (R-T) properties and magnetic properties of the films, respectively. The results indicate that MgB2 films have been fabricated on the copper cathodes, and superconducting transition takes place close to 50 K.
基金Supported by Special Foundation for State Major Basic Research Program of China (Grant No. G2006CB605103)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry,China and the Fundamental Research Funds for the Central University (Grant No. 90405001)
文摘Three coalescence processes of Cu57-Cu57, Cu57-Cu58, and Cu5s Cu58 clusters at 300 K are investigated by employing molecular dynamics simulations. According to the evolutions of mean square displacement and local atom packing, the coalescence process can be separated into three stages including an approaching stage, a coalescing stage, and a coalesced stage. The simulations show that the coalescence processes and the formed products are sensitive to the respective initial structures of, and the relative configuration between, the two coalescing icosahedron-based clusters.
基金supported by the Program for New Century Excellent Talents in University,Ministry of Education,China (Grant No.NCET-07-0162)the Fundamental Research Funds for the Central Universities of China (Grant No.N090505001)supported by "The Hundred Talent Plan" of the Chinese Academy of Sciences and the National Basic Research Program of China (Grant No.2004CB619303)
文摘The microstructures of the Saxidomus purpuratus shell were observed.It was found that the inner and middle layers of the shell are composed of crossed lamellae,while the outer layer exhibits porous structures.With the characteristic structure of each layer,the hardness of inner layer with narrow domains in crossed lamellar structure is the highest,and that of middle layer with wide domains is lower,while the outer layer has the lowest hardness.The damage morphologies of the indentations change a lot,depending not only upon the magnitude of the indentation load,but also upon the orientation between the indentation direction and the crossed lamellae in the microstructure of the shell,which illustrates the anisotropy in mechanical properties of such shells.
基金financially supported by the National Natural Science Foundation of China(Nos.5123100251271054 and 51571058)
文摘To explore the coupled effect of temperature T and strain rate ε on the deformation features of AZ31 Mg alloy, mechanical behaviors and microstructural evolutions as well as surface deformation and damage features were system- atically examined under uniaxial tension at T spanning from 298 to 523 K and ε from 10^-4 to 10^-2 s-1. The increase in T or the decrease in ε leads to the marked decrease in flow stress, the appearance of a stress quasi-plateau after an initially rapid strain hardening, and even to the occurrence of successive strain softening. Correspondingly, the plastic deformation modes of AZ31 Mg alloy transform from the predominant twinning and a limited amount of dislocation slip into the enhanced non-basal slip and the dynamic recrystallization (DRX) together with the weakened twinning. Meanwhile, the cracking modes also change from along grain boundaries (GBs) and at twin boundaries (TBs) or the end of twins into nearby GBs where the DRX has occurred. The appearance of a stress quasi-plateau, the formation of large-sized cracks nearby GBs, and the occurrence of continuous strain softening, are intimately related to the enhancement of the non-basal slip and the DRX.
基金Project supported by the National Natural Science Foundation of China (50572013)
文摘We reported the magnetic properties and magnetocaloric effects(MCE) of(La0.8Ho0.2)2/3Ca1/3MnO3 and(La0.5Ho0.5)2/3Ca1/3MnO3 nanoparticles by sol-gel technique.With this method,we were able to obtain the samples with particle diameters ranging from 50 to 200 nm.In the(La1-xHox)2/3Ca1/3MnO3 compound,an external magnetic field induced a magnetic transition from an paramagnetic phase to a ferromagnetic phase above Ts=105-135 K,leading to magnetocaloric effects.The maximum value of ΔSM was 1.19 J/(kg·K) at 100 K and 2.03 J/(kg·K) at 152 K for a magnetic field change of 5 T.Because both samples had large relative cooling power(RCP) and wide δTFWHM,the study on systems with the(La1-xHox)2/3Ca1/3MnO3-related magnetic transitions may open an important field in searching good magnetic materials.
基金financially supported by the Zhejiang Provincial Natural Science Foundation of China (LY20E030005)Natural Science Foundation of Zhejiang Education Department (Y201942793)the Opening Project of Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices (PMND201905)。
文摘A self-regulated anti-diabetic drug release device mimicking pancreatic cells is highly desirable for the therapy of diabetes. Herein, a glucose-mediated dual-responsive drug delivery system, which combines pH-and H_(2)O_(2)-responsive block copolymer grafted hollow mesoporous silica nanoparticles(HMSNs)with microneedle(MN) array patch, has been developed to achieve self-regulated administration.The poly[4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl acrylate]-b-poly[2-(dimethylamino)ethyl methacrylate](PPBEM-b-PDM) polymer serves as gate keeper to prevent drug release from the cavity of HMSNs at normoglycemic level. In contrast, the drug release rate is significantly enhanced upon H_(2)O_(2)and pH stimuli due to the chemical change of H_(2)O_(2)sensitive PPBEM block and acid responsive PDM block. Therefore, incorporation of anti-diabetic drug and glucose oxidase(GOx, which can oxidize glucose to gluconic acid and in-situ produce H_(2)O_(2)) into stimulus polymer coated HMSNs results in a glucose-mediated MN device after depositing the drug-loaded nanoparticles into MN array patch. Both in vitro and in vivo results show this MN device presents a glucose mediated self-regulated drug release characteristic, which possesses a rapid drug release at hyperglycemic level but retarded drug release at normoglycemic level. The result indicates that the fabricated smart drug delivery system is a good candidate for the therapy of diabetes.
基金supported by National Natural Science Foundation of China(Nos.51201027 and 51271054)Fundamental Research Funds for the Central Universities of China(Nos.N110105001,N120405001 and N120505001)
文摘Grain boundary engineering(GBE) is a practice of improving resistance to grain boundary failure of the material through increasing the proportion of low Σ coincidence site lattice(CSL) grain boundaries(special grain boundaries) in the grain boundary character distribution(GBCD). The GBCD in a cold rolled and annealed Fe-18Cr-18Mn-0.63N high-nitrogen austenitic stainless steel was analyzed by electron back scatter difraction(EBSD). The results show that the optimization process of GBE in the conventional austenitic stainless steel cannot be well applied to this high-nitrogen austenitic stainless steel. The percentage of low ΣCSL grain boundaries could increase from 47.3% for the solid solution treated high-nitrogen austenitic stainless steel specimen to 82.0% for the specimen after 5% cold rolling reduction and then annealing at 1423 K for 10 min.These special boundaries of high proportion efectively interrupt the connectivity of conventional high angle grain boundary network and thus achieve the GBCD optimization for the high-nitrogen austenitic stainless steel.
基金financially supported by the National Natural Science Foundation of China (Nos. 51231002, 51271054, 51201077 and 50671023)the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20110042110017)the Fundamental Research Funds for the Central Universities of China (Nos. N110105001 and N120505001)
文摘To explore the temperature dependence of deformation behavior of BCC structural materials and the relevant effect of pre-annealing, commercially pure iron (CP Fe) produced by equal-channel angular pressing (ECAP) is selected as the experimental material. The influences of deformation temperature T and pre-annealing on deformation behavior, surface deformation characteristics and substructures of ECAP Fe were systematically studied. The results show that ECAP Fe undergoes a remarkable strain softening stage after a rapid strain hardening during uniaxial compression, and the softening degree and the yield strength avs first decrease and then increase with raising temperature. Pre-annealing at 400 ℃ effectively weakens the strain softening degree and increases trys. To understand the influence of deformation temperature on deformation behavior, as well as the relevant pre-annealing effect, deformation and damage characteristics and dislocation structures are studied in detail. In a word, the strain softening of ECAP Fe is associated not only with internal structural instability, but also with temperature, and pre-annealing at 400 ℃ improves high-temperature me- chanical properties of ECAP Fe.