期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Structure-Thermal Conductivity Tentative Correlation for Hybrid Aerogels Based on Nanofibrillated Cellulose-Mesoporous Silica Nanocomposite 被引量:1
1
作者 Dounia Bendahou Abdelkader Bendahou +3 位作者 Bastien Seantier Benedicte Lebeau Yves Grohens Hamid Kaddami 《Journal of Renewable Materials》 SCIE 2018年第3期299-313,共15页
Hybrid aerogels have been prepared by freeze-drying technique after mixing water dispersions of cellulose microfibers or cellulose nanofibers and silica(SiO2)of type SBA-15(2D-hexagonal).The prepared composites were c... Hybrid aerogels have been prepared by freeze-drying technique after mixing water dispersions of cellulose microfibers or cellulose nanofibers and silica(SiO2)of type SBA-15(2D-hexagonal).The prepared composites were characterized by different analysis techniques such as SEM,hot-filament,DMA,etc.These composites are compared to those previously prepared using nanozeolites(NZs)as mineral charge.The morphology studied by SEM indicated that both systems have different structures,i.e.,individual fibers for cellulose microfibers WP-based aerogels and films for nanofibrillated cellulose NFC-based ones....These differences seem to be driven by the charge of the particles,their aspect ratio and concentrations.These hybrid materials exhibit tunable thermal conductivity and mechanical properties.The thermal conductivity values range between^18 to 28 mW.m^-1.K^-1 and confirm the superinsulation ability of these fibrous aerogels.Synergism on the thermal insulation properties and mechanical properties was shown by adjunction of mineral particles to both cellulose-based aerogels by reaching pore size lower than 100 nm.It significantly reduces the thermal conductivity of the hybrid aerogels as predicted by Knudsen et al.Furthermore,the addition of mineral fillers to aerogels based on cellulose microfibers induced a significant increase in stiffness. 展开更多
关键词 AEROGELS cellulose microfibers WP TEMPO-oxidized NFC silica LYOPHILIZATION porosity superinsulation mechanical properties
下载PDF
Depleted uranium oxide supported nickel catalyst for autothermal CO_(2)methanation in non-adiabatic reactor under induction heating 被引量:1
2
作者 Lai Truong-Phuoc Jean-Mario Nhut +7 位作者 Loïc Vidal Cuong Duong-Viet Sécou Sall Corinne Petit Christophe Sutter Mehdi Arab Alex Jourdan Cuong Pham-Huu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第10期310-323,I0010,共15页
Undoped nickel-based catalysts supported on depleted uranium oxide allow one to carry out CO_(2)methanation process under extremely low reaction temperature under atmospheric pressure and powered by a contactless indu... Undoped nickel-based catalysts supported on depleted uranium oxide allow one to carry out CO_(2)methanation process under extremely low reaction temperature under atmospheric pressure and powered by a contactless induction heating.By adjusting the reaction conditions,the catalyst is able to perform CO_(2)methanation reaction under autothermal process operated inside a non-adiabatic reactor,without any external energy supply.Such autothermal process is possible thanks to the high apparent density of the UO_x which allows one to confine the reaction heat in a small catalyst volume in order to confine the exothermicity of the reaction inside the catalyst and to operate the reaction at equilibrium heat in-heat out.Such autothermal operation mode allows one to significantly reduce the complexity of the process compared to that operated using adiabatic reactor,where complete insulation is required to prevent heat disequilibrium,in order to reduce as much as possible,the heat exchange with the external medium.The catalyst displays an extremely high stability as a function of time on stream as no apparent deactivation.It is expected that such new catalyst with unprecedented catalytic performance could open new era in the field of heterogeneous catalysis where traditional supports show their limitations to operate catalytic processes under severe reaction conditions. 展开更多
关键词 CO_(2)methanation Auto-methanation Induction heating Depleted uranium oxide Electrification process Operando DRIFTS
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部