The aim of this paper is to study the weak integral convergence of Kergin interpolation. The results of the weighted integral convergence and the weighted (partial) derivatives integral convergence of Kergin interpola...The aim of this paper is to study the weak integral convergence of Kergin interpolation. The results of the weighted integral convergence and the weighted (partial) derivatives integral convergence of Kergin interpolation polynomial for the smooth functions on the unit disk were obtained in the paper. Those generalized Liang's main results were acquired in 1998 to the more extensive situation. At the same time, the estimation of convergence rate of Kergin interpolation polynomial is given by means of introducing a new kind of smooth norm.展开更多
This paper introduces a new notion of weighted least-square orthogonal polynomials in multivariables from the triangular form. Their existence and uniqueness is studied and some methods for their recursive computation...This paper introduces a new notion of weighted least-square orthogonal polynomials in multivariables from the triangular form. Their existence and uniqueness is studied and some methods for their recursive computation are given. As an application, this paper constructs a new family of Pade-type approximates in multi-variables from the triangular form.展开更多
Let (Mn, g) and (N^n+1, G) be Riemannian manifolds. Let TMn and TN^n+1 be the associated tangent bundles. Let f : (M^n, g) → (N^+1, G) be an isometrical immersion with g = f^*G, F = (f, df) : (TM^n,g...Let (Mn, g) and (N^n+1, G) be Riemannian manifolds. Let TMn and TN^n+1 be the associated tangent bundles. Let f : (M^n, g) → (N^+1, G) be an isometrical immersion with g = f^*G, F = (f, df) : (TM^n,g) → (TN^n+1, Gs) be the isometrical immersion with g= F*Gs where (df)x : TxM → Tf(x)N for any x∈ M is the differential map, and Gs be the Sasaki metric on TN induced from G. This paper deals with the geometry of TM^n as a submanifold of TN^n+1 by the moving frame method. The authors firstly study the extrinsic geometry of TMn in TN^n+1. Then the integrability of the induced almost complex structure of TM is discussed.展开更多
文摘The aim of this paper is to study the weak integral convergence of Kergin interpolation. The results of the weighted integral convergence and the weighted (partial) derivatives integral convergence of Kergin interpolation polynomial for the smooth functions on the unit disk were obtained in the paper. Those generalized Liang's main results were acquired in 1998 to the more extensive situation. At the same time, the estimation of convergence rate of Kergin interpolation polynomial is given by means of introducing a new kind of smooth norm.
文摘This paper introduces a new notion of weighted least-square orthogonal polynomials in multivariables from the triangular form. Their existence and uniqueness is studied and some methods for their recursive computation are given. As an application, this paper constructs a new family of Pade-type approximates in multi-variables from the triangular form.
基金supported by the National Natural Science Foundation of China(No.61473059)the Fundamental Research Funds for the Central University(No.DUT11LK47)
文摘Let (Mn, g) and (N^n+1, G) be Riemannian manifolds. Let TMn and TN^n+1 be the associated tangent bundles. Let f : (M^n, g) → (N^+1, G) be an isometrical immersion with g = f^*G, F = (f, df) : (TM^n,g) → (TN^n+1, Gs) be the isometrical immersion with g= F*Gs where (df)x : TxM → Tf(x)N for any x∈ M is the differential map, and Gs be the Sasaki metric on TN induced from G. This paper deals with the geometry of TM^n as a submanifold of TN^n+1 by the moving frame method. The authors firstly study the extrinsic geometry of TMn in TN^n+1. Then the integrability of the induced almost complex structure of TM is discussed.