In this work, we specify potential elements of the brain to sense and regulate the energy metabolism of the organism. Our numerical investigations base on neurochemical experiments demonstrating a biphasic association...In this work, we specify potential elements of the brain to sense and regulate the energy metabolism of the organism. Our numerical investigations base on neurochemical experiments demonstrating a biphasic association between brain glucose level and neuronal activity. The dynamics of high and low affine KATP channels are most likely to play a decisive role in neuronal activity. We develop a coupled Hodgkin-Huxley model describing the interactive behavior of inhibitory GABAergic and excitatory dopaminergic neurons projecting into the caudate nucleus. The novelty in our approach is that we include the synaptic coupling of GABAergic and dopaminergic neurons as well as the interaction of high and low affine KATP channels. Both are crucial mechanisms described by kinetic models. Simulations demonstrate that our new model is coherent with neurochemical in vitro experiments. Even experimental interventions with glibenclamide and glucosamine are reproduced by our new model. Our results show that the considered dynamics of high and low affine KATP channels may be a driving force in energy sensing and global regulation of the energy metabolism, which supports central aspects of the new Selfish Brain Theory. Moreover, our simulations suggest that firing frequencies and patterns of GABAergic and dopaminergic neurons are correlated to their neurochemical outflow.展开更多
X-ray-induced acoustic computed tomography(XACT)is a hybrid imaging modality for detecting X-ray absorption distribution via ultrasound emission.It facilitates imaging from a single projection X-ray illumination,thus ...X-ray-induced acoustic computed tomography(XACT)is a hybrid imaging modality for detecting X-ray absorption distribution via ultrasound emission.It facilitates imaging from a single projection X-ray illumination,thus reducing the radiation exposure and improving imaging speed.Nonuniform detector response caused by the interference between multichannel data acquisition for ring array transducers and amplifier systems yields ring artifacts in the reconstructed XACT images,which compromises the image quality.We propose model-based algorithms for ring artifacts corrected XACT imaging and demonstrate their effcacy on numerical and experimental measurements.The corrected reconstructions indicate significantly reduced ring artifacts as compared to their conventional counterparts.展开更多
基金the Graduate School for Computing in Medicine and Life Sciences at the University of Lubeck funded by the German Research Foundation[DFG GSC 235/1]for its support.
文摘In this work, we specify potential elements of the brain to sense and regulate the energy metabolism of the organism. Our numerical investigations base on neurochemical experiments demonstrating a biphasic association between brain glucose level and neuronal activity. The dynamics of high and low affine KATP channels are most likely to play a decisive role in neuronal activity. We develop a coupled Hodgkin-Huxley model describing the interactive behavior of inhibitory GABAergic and excitatory dopaminergic neurons projecting into the caudate nucleus. The novelty in our approach is that we include the synaptic coupling of GABAergic and dopaminergic neurons as well as the interaction of high and low affine KATP channels. Both are crucial mechanisms described by kinetic models. Simulations demonstrate that our new model is coherent with neurochemical in vitro experiments. Even experimental interventions with glibenclamide and glucosamine are reproduced by our new model. Our results show that the considered dynamics of high and low affine KATP channels may be a driving force in energy sensing and global regulation of the energy metabolism, which supports central aspects of the new Selfish Brain Theory. Moreover, our simulations suggest that firing frequencies and patterns of GABAergic and dopaminergic neurons are correlated to their neurochemical outflow.
基金supported by the National Cancer Institute of the National Institutes of Health under Award No.(R37CA240806).
文摘X-ray-induced acoustic computed tomography(XACT)is a hybrid imaging modality for detecting X-ray absorption distribution via ultrasound emission.It facilitates imaging from a single projection X-ray illumination,thus reducing the radiation exposure and improving imaging speed.Nonuniform detector response caused by the interference between multichannel data acquisition for ring array transducers and amplifier systems yields ring artifacts in the reconstructed XACT images,which compromises the image quality.We propose model-based algorithms for ring artifacts corrected XACT imaging and demonstrate their effcacy on numerical and experimental measurements.The corrected reconstructions indicate significantly reduced ring artifacts as compared to their conventional counterparts.