Many researchers concentrate on improving the stiffness and stability of aerostatic bearings, however the contradiction between stiffness and stability is still existed. Therefore, orifice, multiple, and porous restri...Many researchers concentrate on improving the stiffness and stability of aerostatic bearings, however the contradiction between stiffness and stability is still existed. Therefore, orifice, multiple, and porous restrictors are designed to illustrate the influence of restrictor characteristics on the stability and stiffness of the aerostatic circular pad bearings. Because both the stiffness and stability of aerostatic bearings are determined by the internal pressure distribution, the full Navier?Stokes(N?S) equations are applied to solve internal pressure distribution in bearing film by using computational fluid dynamics(CFD) method. Simulation results present that the stiffness and stability of aerostatic circular pad bearings are influenced significantly by geometrical and material parameters, such as film thickness, orifice diameters, and viscous resistance coe cient. Verified by the experimental data, the micro vibration of orifice restrictor is almost the same as multiple restrictors with amplitude of 0.02 m/s~2, but it is much stronger than the porous restrictors with acceleration of 0.006 m/s~2. The optimal stiffness of multiple restrictors increased by 46%, compared to only 30.2 N/μm of orifice restrictor, and the porous restrictors had obvious advantage in the small film thickness less than 6 μm where the optimal stiffness increased to 38.3 N/μm. The numerical and experimental results provide guidance for improving the stiffness and stability of aerostatic bearings.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.51375325)NSAF(Grant Nos.U1530130)+2 种基金Shanxi coal based low carbon joint fund(U1610118)National Key Instrument Project(Grant No.2016YFF0102003-02)Science Challenging Program of CAEP(Grant No.JCKY2016212A506-0106)
文摘Many researchers concentrate on improving the stiffness and stability of aerostatic bearings, however the contradiction between stiffness and stability is still existed. Therefore, orifice, multiple, and porous restrictors are designed to illustrate the influence of restrictor characteristics on the stability and stiffness of the aerostatic circular pad bearings. Because both the stiffness and stability of aerostatic bearings are determined by the internal pressure distribution, the full Navier?Stokes(N?S) equations are applied to solve internal pressure distribution in bearing film by using computational fluid dynamics(CFD) method. Simulation results present that the stiffness and stability of aerostatic circular pad bearings are influenced significantly by geometrical and material parameters, such as film thickness, orifice diameters, and viscous resistance coe cient. Verified by the experimental data, the micro vibration of orifice restrictor is almost the same as multiple restrictors with amplitude of 0.02 m/s~2, but it is much stronger than the porous restrictors with acceleration of 0.006 m/s~2. The optimal stiffness of multiple restrictors increased by 46%, compared to only 30.2 N/μm of orifice restrictor, and the porous restrictors had obvious advantage in the small film thickness less than 6 μm where the optimal stiffness increased to 38.3 N/μm. The numerical and experimental results provide guidance for improving the stiffness and stability of aerostatic bearings.