期刊文献+
共找到48篇文章
< 1 2 3 >
每页显示 20 50 100
Precipitation of multi-type nano-quasicrystals in a Mg-Zn-Y alloy
1
作者 W.Z.Wang X.Z.Zhou +2 位作者 L.F.Zhang H.Q.Ye Z.Q.Yang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第3期997-1008,共12页
Mg-6Zn-1Y(at.%)ribbons with strengthening precipitates of multi-type nanoquasicrystals were prepared by melt-spinning followed by aging treatments.Microstructural evolution of the rapidly solidified ribbons during iso... Mg-6Zn-1Y(at.%)ribbons with strengthening precipitates of multi-type nanoquasicrystals were prepared by melt-spinning followed by aging treatments.Microstructural evolution of the rapidly solidified ribbons during isothermal aging was comprehensively studied using various electron microscopy techniques.Two new kinds of decagonal quasicrystals were formed in aged ribbons,in addition to precipitation of nanometer icosahedral quasicrystals.Atomic-resolution observations reveal that both decagonal quasicrystals can be modeled by quasiperiodic tiling with decagonal clusters of 2.5 nm in diameter,but overlap of neighboring clusters in both decagonal quasicrystals is different from the Gummelt model observed in other quasicrystals.A shell composed of complex Laves Mg-Zn domains was formed surrounding each decagonal quasicrystal precipitate upon prolonged aging.In addition,all kinds of nanoprecipitates exhibit excellent structure and size stability at 573 K.Our findings may have implications for not only fundamental studies about quasicrystals,but also microstructural manipulation of high-performance Mg alloys. 展开更多
关键词 QUASICRYSTAL Mg alloys Rapid solidification Scanning-transmission electron microscopy.
下载PDF
Identification of the highly active Zn-N_(4) sites with pyrrole/pyridine-N synergistic coordination by dz^(2)+s-band center for electrocatalytic H_(2)O_(2) production
2
作者 Rui Chen Wei Liu +11 位作者 Zhiyuan Sang Jingjing Jia Zhenxin Li Jiahuan Nie Qiao Jiang Zixian Mao Baitong Guo Qiuying Wang Feng Hou Lichang Yin De'an Yang Ji Liang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期105-113,共9页
Single metal atoms anchored on nitrogen-doped carbon materials(M-N_(4))have been identified as effective active sites for catalyzing the two-electron oxygen reduction reaction(2e-ORR).However,the relationship between ... Single metal atoms anchored on nitrogen-doped carbon materials(M-N_(4))have been identified as effective active sites for catalyzing the two-electron oxygen reduction reaction(2e-ORR).However,the relationship between the local atomic/electronic environments of the M-N_(4) sites(metal atoms coordinated with different types of N species)and their catalytic activity for 2e-ORR has rarely been elaborated clearly,which imposes significant ambiguity for the rational design of catalysts.Herein,guided by the comprehensive density-functional theory calculations and predictions,a series of Zn-N_(4) single-atom catalysts(SACs)are designed with pyrrole/pyridine-N(N_(Po)/N_(Pd))synergistic coordination and prepared by controlling the pyrolysis temperature(600,700,and 800℃),Among them,the dominated Zn-N_(4) configurations with rationally combined N_(Po)/N_(Pd)coordination show~*OOH adsorption strength close to the optimal value,much superior to those with mono N species.Thus,the as-prepared catalyst exhibits a high H_(2)O_(2) selectivity of over 90%both in neutral and alkaline environments,with a superb H_(2)O_(2) yield of up to 33.63 mol g^(-1)h^(-1)in an alkaline with flow cell.More importantly,a new descriptor,dz^(2)+s band center,has been proposed,which is especially feasible for predicting the activity for metal types with fully occupied s and d orbitals.This work thus presents clear guidance for the rational design of highly active SACs toward ORR and provides a complement to the d-band theory for more accurately predicting the catalytic activity of the materials. 展开更多
关键词 Zinc single-atom catalysts Hydrogen peroxide Local coordination environments d+s-Band modulation
下载PDF
Overview of the Research and Development for Reduced Activation Ferritic/Martensitic Steel CLF-1 被引量:3
3
作者 WANG Pinghuai XU Zengyu +2 位作者 CHEN Jiming LIU Shi LI Xiongwei 《Southwestern Institute of Physics Annual Report》 2006年第1期162-163,共2页
Recent accomplishment by the SWIP for the reduced activation ferritic/martensitic steel CLF-1 development has been reviewed. It's found that CLF- 1 steel has better room temperature tensile properties than Eurofer97 ... Recent accomplishment by the SWIP for the reduced activation ferritic/martensitic steel CLF-1 development has been reviewed. It's found that CLF- 1 steel has better room temperature tensile properties than Eurofer97 steel and has a fully martensitic microstructure. 展开更多
关键词 Reduced activation ferritic/martensitic steel Tensile properties Fully martensitic microstructure
下载PDF
Physisorption of Hydrogen in A, X and ZSM-5 Types of Zeolites at Moderately High Pressures 被引量:3
4
作者 Xiao-ming Du Er-dong Wu 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 北大核心 2006年第5期457-462,共6页
The hydrogen adsorption properties and uptake capacities of the A, X and ZSM-5 types of zeolites were investigated at temperatures of 77, 195 and 293 K and pressures up to 7 MPa, using a conventional volumetric adsorp... The hydrogen adsorption properties and uptake capacities of the A, X and ZSM-5 types of zeolites were investigated at temperatures of 77, 195 and 293 K and pressures up to 7 MPa, using a conventional volumetric adsorption apparatus. All hydrogen adsorption isotherms were basically type Ⅰ, but the maximum in isotherm, a unique feature of supereritical adsorption, was observed at high pressures of 2-5 MPa at 77 K. The isosteric heats of adsorption were determined from the isotherms and the factors that influence their variations were discussed. Different types of zeolites exhibited remarkably different hydrogen uptake, based on both the framework structure and the nature of the cations present. The highest gravimetrie storage capacity of 2.55wt% was obtained for NaX-type zeolite at 4 MPa and 77 K. In CaA, NaX and ZSM-5 types of zeolites, hydrogen uptakes were proportional to the specific surface areas, which were associated with the available void volumes of the zeolites. A threshold in hydrogen adsorption observed in NaA and KA was attributed to a pore blocking effect by large cations in KA. A ratio of the kinetic diameter of adsorbate to the effective opening diameter of zeolite was used to judge the blocking effect for physisorption. 展开更多
关键词 ZEOLITE Hydrogen storage Hydrogen adsorption Adsorption isotherm
下载PDF
Preparation of TiAl_3-Al composite coating by cold spraying 被引量:2
5
作者 沈莉 孔令艳 +2 位作者 熊天英 杜昊 李铁藩 《中国有色金属学会会刊:英文版》 EI CSCD 2009年第4期879-882,共4页
TiAl3-Al coating was deposited on orthorhombic Ti2AlNb alloy substrate by cold spraying with the mixture of pure Al and Ti as the feedstock powder at a fixed molar ratio of 3-1 when the spraying distance,gas temperatu... TiAl3-Al coating was deposited on orthorhombic Ti2AlNb alloy substrate by cold spraying with the mixture of pure Al and Ti as the feedstock powder at a fixed molar ratio of 3-1 when the spraying distance,gas temperature and gas pressure for the process were 10 mm,250 ℃ and 1.8 MPa,respectively.The as-sprayed coating was then subjected to heat treatment at 630 ℃ in argon atmosphere for 5 h at a heating rate of 3 ℃/min and an argon gas flow rate of 40 mL/min.The obtained TiAl3-Al composite coating is about 212 μm with a density of 3.16 g/cm3 and a porosity of 14.69% in general.The microhardness and bonding strength for the composite coating are HV525 and 27.12 MPa. 展开更多
关键词 TIAL3 复合涂层 冷喷涂 TI2ALNB 制备 加热速率 喷涂距离
下载PDF
Microstructure,texture and mechanical properties of hot-rolled Mg-4Al-2Sn-0.5Y-0.4Nd alloy 被引量:2
6
作者 Jing Wang Xinjian Zhang +2 位作者 Xi Lu Yuansheng Yang Zhenhong Wang 《Journal of Magnesium and Alloys》 SCIE EI CAS 2016年第3期207-213,共7页
A new Mg–Al–Sn–RE alloy with high ductility at room temperature has been developed.Homogenized Mg–4Al–2Sn–0.5Y–0.4Nd plates 25 mm in thickness were hot-rolled to 1 mm at 673K.The microstructures were characteri... A new Mg–Al–Sn–RE alloy with high ductility at room temperature has been developed.Homogenized Mg–4Al–2Sn–0.5Y–0.4Nd plates 25 mm in thickness were hot-rolled to 1 mm at 673K.The microstructures were characterized as fully recrystallized grains with a lot of fragmented fine particles along the rolling direction.The sheet specimen possesses basal texture of(0002)with the basal pole tilting by about 15°from the normal direction toward the rolling direction.Meanwhile,the texture strength was weakened,which is resulted from the non-basal<c+a>slip and recrystallization texture.For the as-rolled alloy,the yield strength and tensile strength in transverse direction are both higher than those of rolling direction.The average Lankford value is 1.83,which is lower than conventional AZ31 rolled magnesium alloy sheets.The relatively high elongation and low planar anisotropy implies good formability at room temperature. 展开更多
关键词 Magnesium alloys Thermomechanical processing RECRYSTALLIZATION X-ray diffraction Mechanical characterization
下载PDF
Development of Cu foam-based Ni catalyst for solar thermal reforming of methane with carbon dioxide 被引量:3
7
作者 Jianzhong Qi Yanping Sun +3 位作者 Zongli Xie Mike Collins Hao Du Tianying Xiong 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2015年第6期786-793,共8页
Using solar energy to produce syngas via the endothermic reforming of methane has been extensively inves- tigated at the laboratory- and pilot plant-scales as a promising method of storing solar energy. One of the cha... Using solar energy to produce syngas via the endothermic reforming of methane has been extensively inves- tigated at the laboratory- and pilot plant-scales as a promising method of storing solar energy. One of the challenges to scaling up this process in a tubular reformer is to improve the reactor's performance, which is limited by mass and heat transfer issues. High thermal conductivity Cu foam was therefore used as a sub-strate to improve the catalyst's thermal conductivity during solar reforming. We also developed a method to coat the foam with the catalytically active component NiMg3AlOx. The Cu foam-based NiMg3AlOx performs better than catalysts supported on SiSiC foam, which is currently used as a substrate for solar-reforming cat- alysts, at high gas hourly space velocity (≥400,000 mL/(g.h)) or at low reaction temperatures (≤ 720 ℃). The presence of a γ-Al2O3 intermediate layer improves the adhesion between the catalyst and substrate as well as the catalytic activity. 展开更多
关键词 Cu foam-based Ni catalyst Monolithic catalyst Solar thermal reforming of methane
下载PDF
Effect of Zn content on microstructure, mechanical properties and fracture behavior of Mg-Mn alloy
8
作者 Yin Dongsong Zhang Erlin Zeng Songyan 《China Foundry》 SCIE CAS 2009年第1期43-47,共5页
The optical microscope, scanning electron microscope and universal testing machine are used to investigate the effect of Zn content on the microstructure, mechanical properties and fracture behavior of Mg- Mn-Zn alloy... The optical microscope, scanning electron microscope and universal testing machine are used to investigate the effect of Zn content on the microstructure, mechanical properties and fracture behavior of Mg- Mn-Zn alloy. The results indicate that fine (Mg, Mn, AI)-containing phases are distributed uniformly in the Mg-Mn alloy matrix, while small amount of (Mg, Zn)-containing phases are formed in the matrix and the grain boundary becomes coarse when 1wt.% Zn is added. As the Zn content increases, the amount of (Mg, Zn)-containing phases increases, and the grain boundary becomes coarser. When the Zn content is between 3wt.%-5wt.%, slender (Mg, Zn)-containing phases precipitate at the grain boundary. The addition of Zn could reduce the grain size and enhance the mechanical properties of the alloy matrix, and both of the effects can be enhanced by increasing the Zn content further more. When the Zn content is more than 3wt.%, grain size stops decrease, the strength cannot be improved any more and elongation decreases significantly. The fracture behavior of Mg-Mn alloy appears to be cleavage fracture, and transforms into quasi-cleavage fracture as Zn is added. When Zn content exceeded 3wt.%, large amount of (Mg, Zn)-containing phases appear on the fracture face, and act as the crack sources. 展开更多
关键词 ZINC magnesium alloy MICROSTRUCTURE mechanical properties fracture behavior
下载PDF
Microstructure of Al_2O_3/SiO_2 ceramic core nano-composites
9
作者 赵红亮 翁康荣 +4 位作者 关绍康 楼琅洪 李英敖 赵惠田 胡壮麒 《中国有色金属学会会刊:英文版》 CSCD 2004年第3期501-504,共4页
Al2O3/SiO2 ceramic core nano-composites were prepared and their microstructure was investigated by transmission electron microscope(TEM). The results show that intergranular nano-composites are achieved. The bonding... Al2O3/SiO2 ceramic core nano-composites were prepared and their microstructure was investigated by transmission electron microscope(TEM). The results show that intergranular nano-composites are achieved. The bonding between Al2O3 and SiO2 particles is well and the interface is even. Amorphous phases and nano crystals appear in the Al2O3/SiO2 ceramic core nano-composites, which both come into being during the cooling process after sintering. Glass phase does not appear between the Al2O3 and SiO2 particles and only appears among the Al2O3 particles, which can be explained with stress model. The quantity of the glass phase is not much and its influence on the high-temperature deformation of the ceramic core nano-composites is little. 展开更多
关键词 Al203/SiO2 显微结构 复合材料 纳米材料 TEM 玻璃相 压力模型
下载PDF
Effect of enamel top coating on oxidation behavior of multi-arc ion plating NiCrAlY coating in oxygen containing water vapor
10
作者 XIE Dong-bai ZHU Sheng-long WANG Fu-hui 《中国有色金属学会会刊:英文版》 CSCD 2004年第z1期446-450,共5页
The oxidation behavior of Ni-Cr-Al-Y coating produced by multi-arc ion plating with and without an enamel coating was investigated in flow oxygen and oxygen containing water vapor at 900 ℃. The results show that Ni-C... The oxidation behavior of Ni-Cr-Al-Y coating produced by multi-arc ion plating with and without an enamel coating was investigated in flow oxygen and oxygen containing water vapor at 900 ℃. The results show that Ni-Cr-Al-Y coating exhibits low oxidation rate at 900 ℃ in pure oxygen and the oxidation kinetics follow the parabolic rate law. The presence of water vapor accelerates the oxidation rate of Ni-Cr-Al-Y coating and K38G alloy.The enamel top coating is very effective in protecting the Ni-Cr-Al-Y coating from water vapor corrosion attack, but the corrosion attack beneath the enamel coating is not observed. 展开更多
关键词 water vapor ENAMEL COATING Ni-Cr-Al-Y COATING OXIDATION
下载PDF
Study on surface nanocrystallization and resisting H_2S stresscorrosion properties of pressure vessel steel welding joints
11
作者 王吉孝 刘玉亮 熊天英 《广东有色金属学报》 2005年第2期471-474,共4页
Many efforts were spent on the homogenization of microstructure and property of welding joints. A new surface nanocrystallization technique named Supersonic Particles Bombarding(SSPB) can be used for this purpose. T... Many efforts were spent on the homogenization of microstructure and property of welding joints. A new surface nanocrystallization technique named Supersonic Particles Bombarding(SSPB) can be used for this purpose. Two kinds of pressure vessel steel welding joints, 16MnR and 0Cr18Ni9Ti, were chosen to be treated by SSPB. Transmission electron microscopy was introduced to examine the surface microstructure. And their ability to resist H2S stress corrosion was enhanced significantly after the SSPB treatment. The mechanism for the results were analyzed as well. 展开更多
关键词 金属材料 表面防护 表面结晶化 焊接工艺 硫化氢
下载PDF
Effect of Ag on High-Temperature Oxidation Behavior of Mg-6.5Gd-5.6Y-0.1Nd-0.01Ce-0.4Zr Alloy
12
作者 Shuang Guo Tianyu Liu +8 位作者 Tianjiao Luo Yingju Li Xiaohui Feng Qiuyan Huang Ce Zheng Cheng Zhu Yuansheng Yang Weirong Li Feng Li 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2024年第11期1843-1857,共15页
In this paper,the isothermal oxidation experiments were used to study the effect of Ag on the high-temperature oxidation behavior of Mg-6.5Gd-5.6Y-0.1Nd-0.01Ce-0.4Zr(wt%)alloy oxidized at 350℃,400℃ and 450℃ for 120... In this paper,the isothermal oxidation experiments were used to study the effect of Ag on the high-temperature oxidation behavior of Mg-6.5Gd-5.6Y-0.1Nd-0.01Ce-0.4Zr(wt%)alloy oxidized at 350℃,400℃ and 450℃ for 120 h.The results show that the oxidation weight gain of the alloy mainly occurs in the early oxidation stage(0-20 h).This reason attributes to the lack of protective oxide film and the rapid inward diffusion of oxygen through the macroscopic defects of the incomplete oxide film.When dense oxide films such as Y_(2)O_(3),Gd_(2)O_(3),and ZrO2 form,they hinder the inward transport of oxygen ions and improve the high-temperature oxidation resistance of the alloy.In addition,the role of the Ag element at three temperatures is different.The addition of Ag mainly promotes the formation of eutectic phases such as Mg3Gd,Mg24Y5,and Ag2Gd,which reduces the content of Gd and Y elements in the alloy matrix,resulting in a decrease in the diffusion rate of Gd and Y elements during the oxidation process at 350℃ and 400℃,and weakens the oxidation resistance of Ag-containing alloys.However,in the oxidation experiment at 450℃,a large amount of eutectic phase is solid dissolved into the matrix,reducing the difference in element content.At this time,it is detected that the Ag element promoted the outward diffusion of Gd and Y elements,accelerating the formation of the oxide film.The oxidation resistance of Ag-containing alloys is improved. 展开更多
关键词 Magnesium alloy High-temperature oxidation Thermogravimetric analysis Gibbs free energy Oxide film Oxidation resistance
原文传递
Microstructure and composition evolution of a single-crystal superalloy caused by elements interdiffusion with an overlay NiCrAlY coating on oxidation 被引量:10
13
作者 Lanlan Yang Minghui Chen +4 位作者 Jinlong Wang Yanxin Qiao Pingyi Guo Shenglong Zhu Fuhui Wang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第10期49-58,共10页
MCrAlY(M=Ni and/or Co)overlay coating is widely used as a protective coating against high temperature oxidation and corrosion.However,due to its big difference in chemical composition with the underlying superalloy,el... MCrAlY(M=Ni and/or Co)overlay coating is widely used as a protective coating against high temperature oxidation and corrosion.However,due to its big difference in chemical composition with the underlying superalloy,elements interdiffusion occurs inevitably.One of the direct results is the formation of interdiffusion zone(IDZ)and secondary reaction zone(SRZ)with a high density of fine topological closed-packed phases(TCPs),weakening dramatically the mechanical properties of the alloy substrate.It is by now the main problem of modern high-temperature metallic coatings,but there are still hardly any reports studying the formation,growth and transformation of IDZ and SRZ in deep,as well as the precipitation of TCPs.In this work,a typical NiCrAlY coating is deposited by arc ion plating on a single-crystal superalloy N5.Elements interdiffusion between them and its relationship on microstructure were clarified.Cr rather than Al from the coating diffuses into the alloy at high temperatures and segregates immediately beneath their interface,contributing largely to the formation of IDZ.Simultaneously,diffusion of Ni from the deep alloy to IDZ leads to the formation and continuous expansion of SRZ. 展开更多
关键词 Single-crystal superalloys NiCrAlY coating High-temperature oxidation Arcion plating Elements interdiffusion MICROSTRUCTURE
原文传递
Effect of interlayer addition on microstructure and mechanical properties of NiTi/stainless steel joint by electron beam welding 被引量:10
14
作者 H.Niu H.C.Jiang +1 位作者 M.J.Zhao L.J.Rong 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第2期16-24,共9页
NiTi/Stainless Steel(SS) sheets have been welded via a vacuum electron beam welding process, with three methods(offsetting electron beam to SS side without interlayer, adding Ni interlayer and adding Fe Ni interlayer)... NiTi/Stainless Steel(SS) sheets have been welded via a vacuum electron beam welding process, with three methods(offsetting electron beam to SS side without interlayer, adding Ni interlayer and adding Fe Ni interlayer), to promote mechanical properties of the Ni Ti/SS joints. The joints with different interlayers are all fractured in the weld zone near the Ni Ti side, which is attributed to the enrichment of intermetallic compounds including Fe2 Ti and Ni3 Ti. The fracture mechanisms of different joints are strongly dependent on the types of interlayers, and the joints without interlayer, adding Ni interlayer and adding Fe Ni interlayer exhibit cleavage fracture, intergranular fracture and mixed fracture composed of cleavage and tearing ridge, respectively. Compared with the brittle laves phase Fe2 Ti, Ni3 Ti phase can exhibit certain plasticity, block the crack propagation and change the direction of crack propagation. The composite structure of Ni3 Ti and Fe2 Ti will be formed when the Fe Ni alloy is taken as the interlayer, which provides the joint excellent mechanical properties, with rupture strength of 343 MPa. 展开更多
关键词 NITI Stainless steel Electron beam welding INTERLAYER Mechanical property
原文传递
Effects of Forging and Heat Treatments on the Microstructure and Oxidation Behavior of 316LN Stainless Steel in High Temperature Water 被引量:8
15
作者 Yueling Guo En-Hou Han Jianqiu Wang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2015年第4期403-412,共10页
Microstructure of 316 LN stainless steel(ss),including the as-received material and samples processed by solution anneal treatment and stress relief treatment after forging,was characterized by Vickers hardness(HV) te... Microstructure of 316 LN stainless steel(ss),including the as-received material and samples processed by solution anneal treatment and stress relief treatment after forging,was characterized by Vickers hardness(HV) testing and electron back scattering diffraction(EBSD).The oxide film formed on samples after immersion in borated and lithiated water at 583.15 K was investigated by scanning electron microscopy(SEM) and X-ray photoelectron spectroscopy(XPS).Results showed that the grain size of samples was largely reduced after forging.Higher fraction of coincidence site lattice(CSL) boundaries and lower residual strain were observed in samples with either solution anneal treatment or stress relief treatment.The proportion of CSL boundaries was largely enhanced by solution anneal treatment after forging,due to the recrystallization occurring during solution anneal treatment.The oxide film grown on 316 LNss with solution anneal treatment after forging exhibited more strong protectiveness,as compared to the oxide film grown on samples with stress relief treatment after forging and the oxide film grown on asreceived samples without forging.The mechanisms of oxidation were then discussed. 展开更多
关键词 Stainless steel FORGING CORROSION Residual strain
原文传递
Biofunctional magnesium coated Ti6Al4V scaffold enhances osteogenesis and angiogenesis in vitro and in vivo for orthopedic application 被引量:18
16
作者 Peng Gao Bo Fan +12 位作者 Xiaoming Yu Wenwen Liu Jie Wu Lei Shi Di Yang Lili Tan Peng Wan Yulin Hao Shujun Li Wentao Hou Ke Yang Xiaokang Li Zheng Guo 《Bioactive Materials》 SCIE 2020年第3期680-693,共14页
The insufficient osteogenesis and osseointegration of porous titanium based scaffold limit its further application.Early angiogenesis is important for scaffold survival.It is necessary to develop a multifunctional sur... The insufficient osteogenesis and osseointegration of porous titanium based scaffold limit its further application.Early angiogenesis is important for scaffold survival.It is necessary to develop a multifunctional surface on titanium scaffold with both osteogenic and angiogenic properties.In this study,a biofunctional magnesium coating is deposited on porous Ti6Al4V scaffold.For osseointegration and osteogenesis analysis,in vitro studies reveal that magnesium-coated Ti6Al4V co-culture with MC3T3-E1 cells can improve cell proliferation,adhesion,extracellular matrix(ECM)mineralization and ALP activity compared with bare Ti6Al4V cocultivation.Additionally,MC3T3-E1 cells cultured with magnesium-coated Ti6Al4V show significantly higher osteogenesisrelated genes expression.In vivo studies including fluorochrome labeling,micro-computerized tomography and histological examination of magnesium-coated Ti6Al4V scaffold reveal that new bone regeneration is significantly increased in rabbits after implantation.For angiogenesis studies,magnesium-coated Ti6Al4V improve HUVECs proliferation,adhesion,tube formation,wound-healing and Transwell abilities.HUVECs cultured with magnesium-coated Ti6Al4V display significantly higher angiogenesis-related genes(HIF-1αand VEGF)expression.Microangiography analysis reveal that magnesium-coated Ti6Al4V scaffold can significantly enhance the blood vessel formation.This study enlarges the application scope of magnesium and provides an optional choice to the conventional porous Ti6Al4V scaffold with enhanced osteogenesis and angiogenesis for further orthopedic applications. 展开更多
关键词 Porous Ti6Al4V scafflod Surface modification Magnesium coating OSTEOGENESIS ANGIOGENESIS
原文传递
Microstructure and corrosion behavior of the heat affected zone of a stainless steel 308L-316L weld joint 被引量:6
17
作者 Cheng Ma Qunjia Peng +2 位作者 Jinna Mei En-Hou Han Wei Ke 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2018年第10期1823-1834,共12页
Microstructure of the heat affected zone (HAZ) of a 308L-316L stainless steel (SS) weld joint and its corrosion behavior in high temperature water were studied. Peak of the residual strain was observed to approach... Microstructure of the heat affected zone (HAZ) of a 308L-316L stainless steel (SS) weld joint and its corrosion behavior in high temperature water were studied. Peak of the residual strain was observed to approach to the fusion boundary in the HAZ while the strain increased from the top to root areas of the HAZ. The root area of the HAZ shows a lower corrosion resistance in high temperature water than the top and middle areas of the HAZ. This is attributed to a higher level of residual strain in association with a higher density of tangled dislocations in the top area of the HAZ. The results suggest that the residual strain in the HAZ could also promote the SCC through its effect on corrosion, in addition to that on the local microstructure and mechanical property of the steel. 展开更多
关键词 Stainless steel HAZ Weld joint CORROSION High temperature water
原文传递
Effect of Microstructure on Corrosion Behavior of Mg–Sr Alloy in Hank's Solution 被引量:4
18
作者 Jia-Hui Dong Li-Li Tan +1 位作者 Yi-Bin Ren Ke Yang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2019年第3期305-320,共16页
Mg–Sr alloy has been studied as a potential biodegradable material with excellent bioactivity to promote the bone formation. However, its degradation behavior needs to be well controlled to avoid the negative effect,... Mg–Sr alloy has been studied as a potential biodegradable material with excellent bioactivity to promote the bone formation. However, its degradation behavior needs to be well controlled to avoid the negative effect, which is important for future application. Therefore in this study, the microstructure and its effect on corrosion behavior of an Mg–1.5 Sr alloy were investigated. The microstructures of the alloy under different processing procedures were characterized by both optical and scanning electron microscopes. The corrosion performance was studied in Hank's solution using immersion,potentiodynamic polarization and electrochemical impedance spectroscopy(EIS) tests. The results showed that the grain size and the amount and distribution of b-Mg_(17)Sr_2 had obvious effects on the corrosion behavior of Mg–Sr alloy. The smaller the grain size was, the more the protective surface layer formed on Mg–Sr alloy, and the higher the corrosion resistance was. For the as-cast Mg–Sr alloy, the network-like second phases precipitated along the grain boundaries could not hinder the corrosion due to their own corrosion cracking accelerating the intergranular corrosion. However, the refinement of second phases increased the corrosion resistance of the as-extruded alloy. After solution treatment at 450 °C for 5 h, the grains in the alloy did not grow much and b-Mg_(17)Sr_2 phases homogenously distributed in the alloy, resulting in the increase in corrosion resistance. However, after aging treatment, large amount of precipitated second phases increased the galvanic corrosion of the alloy, accelerating the development of corrosion. 展开更多
关键词 Mg–Sr ALLOY MICROSTRUCTURE Corrosion EXTRUSION HEAT treatment
原文传递
Microstructure evolution and hot deformation behavior of carbon nanotube reinforced 2009Al composite with bimodal grain structure 被引量:6
19
作者 K.Ma Z.Y.Liu +3 位作者 S.Bi X.X.Zhang B.L.Xiao Z.Y.Ma 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第11期73-82,共10页
The hot deformation behaviors of the bimodal carbon nanotube reinforced 2009Al(CNT/2009Al)composite were studied by establishing processing map and characterizing the microstructure evolution.The results indicate that... The hot deformation behaviors of the bimodal carbon nanotube reinforced 2009Al(CNT/2009Al)composite were studied by establishing processing map and characterizing the microstructure evolution.The results indicate that the grain size in the ultra-fine grained zones was stable during hot deformation,while the coarse grained zones were elongated with their long axis directions tending to be perpendicular to the compression direction.Low temperature with high strain rate(LTHR),as well as high temperature with low strain rate(HTLR)could increase the length/width ratio of the coarse grained zones.However,LTHR and HTLR could cause the instable deformation.The instable deformation at LTHR was induced by severe intragranular plastic deformation and the localized shear crack,while the instable deformation at HTLR resulted from the more deformation component at the coarse grained zones,and the micro-pore initiation due to CNT re-agglomeration at the boundaries between the coarse and the ultra-fine grained zones. 展开更多
关键词 Carbon nanotube BIMODAL Aluminum matrix composite Hot deformation Processing map
原文传递
Biological applications of copper-containing materials 被引量:10
20
作者 Peng Wang Yonghui Yuan +5 位作者 Ke Xu Hongshan Zhong Yinghui Yang Shiyu Jin Ke Yang Xun Qi 《Bioactive Materials》 SCIE 2021年第4期916-927,共12页
Copper is an indispensable trace metal element in the human body,which is mainly absorbed in the stomach and small intestine and excreted into the bile.Copper is an important component and catalytic agent of many enzy... Copper is an indispensable trace metal element in the human body,which is mainly absorbed in the stomach and small intestine and excreted into the bile.Copper is an important component and catalytic agent of many enzymes and proteins in the body,so it can influence human health through multiple mechanisms.Based on the biological functions and benefits of copper,an increasing number of researchers in the field of biomaterials have focused on developing novel copper-containing biomaterials,which exhibit unique properties in protecting the cardiovascular system,promoting bone fracture healing,and exerting antibacterial effects.Copper can also be used in promoting incisional wounds healing,killing cancer cells,Positron Emission Tomography(PET)imaging,radioimmunological tracing and radiotherapy of cancer.In the present review,the biological functions of copper in the human body are presented,along with an overview of recent progress in our understanding of the biological applications and development of copper-containing materials.Furthermore,this review also provides the prospective on the challenges of those novel biomaterials for future clinical applications. 展开更多
关键词 COPPER BIOMATERIALS ANGIOGENESIS OSTEOGENESIS ANTIBACTERIAL
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部