The brain is a dynamic organ of the biological renaissance due to the existence of neuroplasticity. Adult neurogenesis abides by every aspect of neuroplasticity in the intact brain and contributes to neural regenerati...The brain is a dynamic organ of the biological renaissance due to the existence of neuroplasticity. Adult neurogenesis abides by every aspect of neuroplasticity in the intact brain and contributes to neural regeneration in response to brain diseases and injury. The occurrence of adult neurogenesis has unequivocally been witnessed in human subjects, experimental and wildlife research including rodents, bats and cetaceans. Adult neurogenesis is a complex cellular process, in which generation of neuroblasts namely, neuroblastosis appears to be an integral process that occur in the limbic system and basal ganglia in addition to the canonical neurogenic niches. Neuroblastosis can be regulated by various factors and contributes to different functions of the brain. The characteristics and fate of neuroblasts have been found to be different among mammals regardless of their cognitive functions. Recently, regulation of neuroblastosis has been proposed for the sensorimotor interface and regenerative neuroplasticity of the adult brain. Hence, the understanding of adult neurogenesis at the functional level of neuroblasts requires a great scientific attention. Therefore, this mini-review provides a glimpse into the conceptual development of neuroplasticity, discusses the possible role of different types of neuroblasts and signifies neuroregenerative failure as a potential cause of dementia.展开更多
Traumatic spinal cord injury(SCI)remains a devastating neurological disorder leading to severe consequences for the affected individual and their families.Further,socioeconomic implications should not be neglected a...Traumatic spinal cord injury(SCI)remains a devastating neurological disorder leading to severe consequences for the affected individual and their families.Further,socioeconomic implications should not be neglected as well.Although life expectancy after SCI increased tremendously,therapeutic treatment options remain limited.展开更多
Abstract The expression of early developmental markers such as doublecortin (DCX) and the polysialylated-neural cell adhesion molecule (PSA-NCAMIp has been used to identify immature neurons within canonical neuroge...Abstract The expression of early developmental markers such as doublecortin (DCX) and the polysialylated-neural cell adhesion molecule (PSA-NCAMIp has been used to identify immature neurons within canonical neurogenic niches. Additionally, DCX/PSA-NCAM + immature neurons reside in cortical layer II of the paleocortex and in the paleo- and entorhinal cortex of mice and rats, respectively. These cells are also found in the neocortex of guinea pigs, rabbits, some afrotherian mammals, cats, dogs, non-human primates, and humans. The population of cortical DCX/PSA-NCAM + immature neurons is generated prenatally as conclusively demonstrated in mice, rats, and guinea pigs. Thus, the majority of these cells do not appear to be the product of adult proliferative events. The immature neurons in cortical layer II are most abundant in the corlLices of young individuals, while very few DCX/PSA-NCAM + cortical neurons can be detected in aged mammals. Maturation of DCX/PSA-NCAM + cells into glutamatergic and GABAergic neurons has been proposed as an explanation for the age-dependent reduction in their population over time. In this review, we compile the recent information regarding the age-related decrease in the number of cortical DCX/PSA-NCAM + neurons. We compare the distribution and fates of DCX/PSA-NCAM + neurons among mammalian species and speculate their impact on cognitive function. To respond to the diversity of adult neurogenesis research produced over the last number of decades, we close this review by discussing the use and precision of the term "adult non-canonical neurogenesis."展开更多
基金supported by the FWF Special Research Program(SFB)F44(F4413-B23)"Cell Signaling in Chronic CNS Disorders",and through funding from the European Union’s Seventh Framework Program(FP7/2007-2013)under grant agreements n°HEALTH-F2-2011-278850(INMi ND),n°HEALTH-F2-2011-279288(IDEA),n°FP7-REGPOT-316120(Glow Brain)a startup grant from the Faculty Recharge Programme,University Grants Commission(UGC-FRP),New Delhi,India(to MK)+1 种基金a research grant from DST-SERB,New Delhi,India(EEQ/2016/000639)(to MK)an Early Career Research Award(ECR/2016/000741)(to MK)
文摘The brain is a dynamic organ of the biological renaissance due to the existence of neuroplasticity. Adult neurogenesis abides by every aspect of neuroplasticity in the intact brain and contributes to neural regeneration in response to brain diseases and injury. The occurrence of adult neurogenesis has unequivocally been witnessed in human subjects, experimental and wildlife research including rodents, bats and cetaceans. Adult neurogenesis is a complex cellular process, in which generation of neuroblasts namely, neuroblastosis appears to be an integral process that occur in the limbic system and basal ganglia in addition to the canonical neurogenic niches. Neuroblastosis can be regulated by various factors and contributes to different functions of the brain. The characteristics and fate of neuroblasts have been found to be different among mammals regardless of their cognitive functions. Recently, regulation of neuroblastosis has been proposed for the sensorimotor interface and regenerative neuroplasticity of the adult brain. Hence, the understanding of adult neurogenesis at the functional level of neuroblasts requires a great scientific attention. Therefore, this mini-review provides a glimpse into the conceptual development of neuroplasticity, discusses the possible role of different types of neuroblasts and signifies neuroregenerative failure as a potential cause of dementia.
文摘Traumatic spinal cord injury(SCI)remains a devastating neurological disorder leading to severe consequences for the affected individual and their families.Further,socioeconomic implications should not be neglected as well.Although life expectancy after SCI increased tremendously,therapeutic treatment options remain limited.
文摘Abstract The expression of early developmental markers such as doublecortin (DCX) and the polysialylated-neural cell adhesion molecule (PSA-NCAMIp has been used to identify immature neurons within canonical neurogenic niches. Additionally, DCX/PSA-NCAM + immature neurons reside in cortical layer II of the paleocortex and in the paleo- and entorhinal cortex of mice and rats, respectively. These cells are also found in the neocortex of guinea pigs, rabbits, some afrotherian mammals, cats, dogs, non-human primates, and humans. The population of cortical DCX/PSA-NCAM + immature neurons is generated prenatally as conclusively demonstrated in mice, rats, and guinea pigs. Thus, the majority of these cells do not appear to be the product of adult proliferative events. The immature neurons in cortical layer II are most abundant in the corlLices of young individuals, while very few DCX/PSA-NCAM + cortical neurons can be detected in aged mammals. Maturation of DCX/PSA-NCAM + cells into glutamatergic and GABAergic neurons has been proposed as an explanation for the age-dependent reduction in their population over time. In this review, we compile the recent information regarding the age-related decrease in the number of cortical DCX/PSA-NCAM + neurons. We compare the distribution and fates of DCX/PSA-NCAM + neurons among mammalian species and speculate their impact on cognitive function. To respond to the diversity of adult neurogenesis research produced over the last number of decades, we close this review by discussing the use and precision of the term "adult non-canonical neurogenesis."