期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
In operando study of orthorhombic V_(2)O_(5) as positive electrode materials for K-ion batteries
1
作者 Qiang Fu Angelina Sarapulova +7 位作者 Lihua Zhu Georgian Melinte Alexander Missyul Edmund Welter Xianlin Luo Michael Knapp Helmut Ehrenberg Sonia Dsoke 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第11期627-636,I0015,共11页
Herein, the electrochemical performance and the mechanism of potassium insertion/deinsertion in orthorhombic V_(2)O_(5) nanoparticles are studied. The V2O5 electrode displays an initial potassiation/depotassiation cap... Herein, the electrochemical performance and the mechanism of potassium insertion/deinsertion in orthorhombic V_(2)O_(5) nanoparticles are studied. The V2O5 electrode displays an initial potassiation/depotassiation capacity of 200 mAh g^(−1)/217 mAh g^(−1) in the voltage range 1.5–4.0 V vs. K^(+)/K at C/12 rate, suggesting fast kinetics for potassium insertion/deinsertion. However, the capacity quickly fades during cycling, reaching 54 mAh g^(−1) at the 31st cycle. Afterwards, the capacity slowly increases up to 80 mAh g^(−1) at the 200th cycle. The storage mechanism upon K ions insertion into V2O5 is elucidated. In operando synchrotron diffraction reveals that V_(2)O_(5) first undergoes a solid solution to form K_(0.6)V_(2)O_(5) phase and then, upon further K ions insertion, it reveals coexistence of a solid solution and a two-phase reaction. During K ions deinsertion, the coexistence of solid solution and the two-phase reaction is identified together with an irreversible process. In operando XAS confirms the reduction/oxidation of vanadium during the K insertion/extraction with some irreversible contributions. This is consistent with the results obtained from synchrotron diffraction, ex situ Raman, X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). Moreover, ex situ XPS confirms the “cathode electrolyte interphase” (CEI) formation on the electrode and the decomposition of CEI film during cycling. 展开更多
关键词 Orthorhombic V_(2)O_(5) In operando synchrotron diffraction In operando X-ray absorption spectroscopy K-ion batteries
下载PDF
Comparison of ligand migration and binding in heme proteins of the globin family
2
作者 Karin Nienhaus G.Ulrich Nienhaus 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第12期109-118,共10页
The binding of small diatomic ligands such as carbon monoxide or dioxygen to heme proteins is among the simplest biological processes known. Still, it has taken many decades to understand the mechanistic aspects of th... The binding of small diatomic ligands such as carbon monoxide or dioxygen to heme proteins is among the simplest biological processes known. Still, it has taken many decades to understand the mechanistic aspects of this process in full detail. Here, we compare ligand binding in three heme proteins of the globin family, myoglobin, a dimeric hemoglobin, and neuroglobin. The combination of structural, spectroscopic, and kinetic experiments over many years by many laboratories has revealed common properties of globins and a clear mechanistic picture of ligand binding at the molecular level. In addition to the ligand binding site at the heme iron, a primary ligand docking site exists that ensures efficient ligand binding to and release from the heme iron. Additional, secondary docking sites can greatly facilitate ligand escape after its dissociation from the heme. Although there is only indirect evidence at present, a preformed histidine gate appears to exist that allows ligand entry to and exit from the active site. The importance of these features can be assessed by studies involving modified proteins(via site-directed mutagenesis) and comparison with heme proteins not belonging to the globin family. 展开更多
关键词 flash photolysis ligand binding time-resolved spectroscopy heme protein
下载PDF
Towards in-situ diagnostics of multi-photon 3D laser printing using optical coherence tomography 被引量:2
3
作者 Roman Zvagelsky Frederik Mayer +3 位作者 Dominik Beutel Carsten Rockstuhl Guillaume Gomard Martin Wegener 《Light(Advanced Manufacturing)》 2022年第3期219-233,共15页
In recent years,multi-photon 3D laser printing has become a widely used tool for the fabrication of micro-and nanostructures for a large variety of applications.Typically,thorough sample characterisation is key for an... In recent years,multi-photon 3D laser printing has become a widely used tool for the fabrication of micro-and nanostructures for a large variety of applications.Typically,thorough sample characterisation is key for an efficient optimisation of the printing process.To date,three-dimensional microscopic inspection has usually been carried out on finished 3D printed microstructures,that is,using ex-situ approaches.In contrast,in-situ 3D characterization tools are desirable for quickly assessing the quality and properties of 3D printed microstructures.Along these lines,we present and characterise a Fourier-domain optical coherence tomography(FD-OCT)system that can be readily integrated into an existing 3D laser lithography setup.We demonstrate its capabilities by examining different 3D printed polymer microstructures immersed in a liquid photoresist.In such samples,local reflectivity arises from the(refractive-index)contrasts between the polymerised and non-polymerised regions.Thus,the refractive index of the printed material can be extracted.Furthermore,we demonstrate that the reflectivity of polymer-monomer transitions exhibits time-dependent behaviour after printing.Supported by transfer-matrix calculations,we explain this effect in terms of the time-dependent graded-index transition originating from monomer diffusion into the polymer matrix.Finally,we show exemplary 3D reconstructions of printed structures that can be readily compared with 3D computer designs. 展开更多
关键词 Multi-photon 3D laser printing Optical coherence tomography In-situ diagnostics
原文传递
Protection of Li metal anode by surface-coating of PVDF thin film to enhance the cycling performance of Li batteries 被引量:6
4
作者 Zhenguang Gao Shaojian Zhang +7 位作者 Zhigen Huang Yanqiu Lu Weiwei Wang Kai Wang Juntao Li Yao Zhou Ling Huang Shigang Sun 《Chinese Chemical Letters》 SCIE CAS CSCD 2019年第2期525-528,共4页
Lithium metal, the ideal anode material for next-generation high-energy batteries, suffers from the severe safety problem of Li dendrites. Herein, we report a simple approach to effectively maintain the morphology of ... Lithium metal, the ideal anode material for next-generation high-energy batteries, suffers from the severe safety problem of Li dendrites. Herein, we report a simple approach to effectively maintain the morphology of Li-metal anode and enhance the cycling performance of Li batteries by surface coating of a porous polyvinylidene fluoride (PVDF) thin film. In symmetrical cells testing, the cells with the Li@PVDF electrode display stable cycling performance more than 1300 h (650 cycles) at the current density of 0.5 mA/cm^2 with a stripping/plating capacity of 0.5 mAh/cm^2. The results with full cells employing Li@PVDF anode and LiFePO_4 cathode show a good cycling ability with a capacity retention of 80.0% after 500 cycles at 4 C and an excellent rate capability with a high capacity of 78.4 mAh/g even at a high rate of 10 C. 展开更多
关键词 LI metal ANODE Surface-coating PVDF thin film LI DENDRITES CYCLING performance
原文传递
Hybrid 2D–3D optical devices for integrated optics by direct laser writing 被引量:3
5
作者 Martin Schumann Tiemo Buckmann +2 位作者 Nico Gruhler Martin Wegener Wolfram Pernice 《Light(Science & Applications)》 SCIE EI CAS 2014年第1期173-181,共9页
Integrated optical chips have already been established for application in optical communication.They also offer interesting future perspectives for integrated quantum optics on a chip.At present,however,they are mostl... Integrated optical chips have already been established for application in optical communication.They also offer interesting future perspectives for integrated quantum optics on a chip.At present,however,they are mostly fabricated using essentially planar fabrication approaches like electron-beam lithography or UV optical lithography.Many further design options would arise if one had complete fabrication freedom in regard to the third dimension normal to the chip without having to give up the virtues and the know-how of existing planar fabrication technologies.As a step in this direction,we here use three-dimensional dip-in direct-laser-writing optical lithography to fabricate three-dimensional polymeric functional devices on pre-fabricated planar optical chips containing Si3N4 waveguides as well as grating couplers made by standard electron-beam lithography.The first example is a polymeric dielectric rectangular-shaped waveguide which is connected to Si3N4 waveguides and that is adiabatically twisted along its axis to achieve geometrical rotation of linear polarization on the chip.The rotator’s broadband performance at around 1550 nm wavelength is verified by polarization-dependent grating couplers.Such polarization rotation on the optical chip cannot easily be achieved by other means.The second example is a whispering-gallery-mode optical resonator connected to Si_(3)N_(4) waveguides on the chip via polymeric waveguides.By mechanically connecting the latter to the disk,we can control the coupling to the resonator and,at the same time,guarantee mechanical stability of the three-dimensional architecture on the chip. 展开更多
关键词 direct laser writing integrated optics nanophotonic circuits polarization conversion
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部