期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Ionic Species Affect the Self-Propulsion of Urease-Powered Micromotors 被引量:3
1
作者 Xavier Arque Xavier Andres +5 位作者 Rafael Mestre Bernard Ciraulo Jaime Ortega Arroyo Romain Quidant Tania Patino Samuel Sanchez 《Research》 EI CAS 2020年第1期349-362,共14页
Enzyme-powered motors self-propel through the catalysis of in situ bioavailable fuels,which makes them excellent candidates for biomedical applications.However,fundamental issues like their motion in biological fluids... Enzyme-powered motors self-propel through the catalysis of in situ bioavailable fuels,which makes them excellent candidates for biomedical applications.However,fundamental issues like their motion in biological fluids and the understanding of the propulsion mechanism are critical aspects to be tackled before a future application in biomedicine.Herein,we investigated the physicochemical effects of ionic species on the self-propulsion of urease-powered micromotors.Results showed that the presence of PBS,NaOH,NaCl,and HEPES reduced self-propulsion of urease-powered micromotors pointing towards iondependent mechanisms of motion.We studied the 3D motion of urease micromotors using digital holographic microscopy to rule out any motor-surface interaction as the cause of motion decay when salts are present in the media.In order to protect and minimize the negative effect of ionic species on micromotors’performance,we coated the motors with methoxypolyethylene glycol amine(mPEG)showing higher speed compared to noncoated motors at intermediate ionic concentrations.These results provide new insights into the mechanism of urease-powered micromotors,study the effect of ionic media,and contribute with potential solutions to mitigate the reduction of mobility of enzyme-powered micromotors. 展开更多
关键词 HOLOGRAPHIC SALTS catalysis
原文传递
Waste Tire Rubber-based Refrigerants for Solid-state Cooling Devices 被引量:1
2
作者 Nicolau Molina Born Erik Oda Usuda +4 位作者 Mariana da Silva Gigliotti Denílson JoséMarcolino de Aguiar William Imamura Lucas Soares Paixao Alexandre Magnus Gomes Carvalho 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2020年第7期769-775,I0007,共8页
Management of discarded tires is a compelling environmental issue worldwide.Although there are several approaches developed to recycle waste tire rubbers,their application in solid-state cooling is still unexplored.Co... Management of discarded tires is a compelling environmental issue worldwide.Although there are several approaches developed to recycle waste tire rubbers,their application in solid-state cooling is still unexplored.Considering the high barocaloric potential verified for elastomers,the use of waste tire rubber(WTR)as a refrigerant in solid-state cooling devices is very promising.Herein,we investigated the barocaloric effects in WTR and polymer blends made of vulcanized natural rubber(VNR)and WTR,to evaluate its feasibility for solid-state cooling technologies.The adiabatic temperature changes and the isothermal entropy changes reach giant values,as well as the performance parameters,being comparable or even better than most barocaloric materials in literature.Moreover,pure WTR and WTR-based samples also present a faster thermal exchange than VNR,consisting of an additional advantage of using these discarded materials.Thus,the present findings evidence the encouraging perspectives of employing waste rubbers in solid-state cooling based on barocaloric effects,contributing to both the recycling of polymers and the sustainable energy technology field. 展开更多
关键词 Waste tire rubber Solid-state cooling Barocaloric effect Tire recycling Sustainable energy
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部