期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Improving dryland maize productivity and water efficiency with heterotrophic ammonia-oxidizing bacteria via nitrification and cytokinin activity
1
作者 Xiaoling Wang Jiawei Cao +4 位作者 Runhong Sun Wei Liu Lin Qi Peng Song Shenjiao Yang 《The Crop Journal》 SCIE CSCD 2024年第3期880-887,共8页
A two-year field experiment conducted under dryland conditions in semi-humid and drought-prone regions of China aimed to assess the effect of ammonia-oxidizing bacterial on maize water use efficiency and yield.A heter... A two-year field experiment conducted under dryland conditions in semi-humid and drought-prone regions of China aimed to assess the effect of ammonia-oxidizing bacterial on maize water use efficiency and yield.A heterotrophic ammonia-oxidizing bacteria(HAOB)strain S2_8_1 was used.Six treatments were applied:(1)no irrigation+HAOB strain(DI),(2)no irrigation+blank culture medium(DM),(3)no irrigation control(DCK),(4)irrigation+HAOB(WI),(5)irrigation+blank culture medium(WM),and(6)irrigation control(WCK).Results revealed that HAOB treatment increased maize growth,yield,and water use efficiency over controls,regardless of whether the year was wet or dry.This improvement was attributed to the accelerated nitrification in the rhizosphere soil due to HAOB inoculation,which subsequently led to increased levels of leaf cytokinins.Overall,these findings suggest that HAOB inoculation holds promise as a strategy to boost water use efficiency and maize productivity in dryland agriculture. 展开更多
关键词 Heterotrophic ammonia-oxidizing bacteria Rhizosphere soil nitrification CYTOKININ MAIZE Dryland agriculture
下载PDF
Genomic evolution and insights into agronomic trait innovations of Sesamum species
2
作者 Hongmei Miao Lei Wang +23 位作者 Lingbo Qu Hongyan Liu Yamin Sun Meiwang Le Qiang Wang Shuangling Wei Yongzhan Zheng Wenchao Lin Yinghui Duan Hengchun Cao Songjin Xiong Xuede Wang Libin Wei Chun Li Qin Ma Ming Ju Ruihong Zhao Guiting Li Cong Mu Qiuzhen Tian Hongxian Mei Tide Zhang Tongmei Gao Haiyang Zhang 《Plant Communications》 SCIE CSCD 2024年第1期262-283,共22页
Sesame is an ancient oilseed crop with high oil content and quality.However,the evolutionary history and genetic mechanisms of its valuable agronomic traits remain unclear.Here,we report chromosome-scale genomes of cu... Sesame is an ancient oilseed crop with high oil content and quality.However,the evolutionary history and genetic mechanisms of its valuable agronomic traits remain unclear.Here,we report chromosome-scale genomes of cultivated sesame(Sesamum indicum L.)and six wild Sesamum species,representing all three karyotypes within this genus.Karyotyping and genome-based phylogenic analysis revealed the evolutionary route of Sesamum species from n=13 to n=16 and revealed that allotetraploidization occurred in the wild species Sesamum radiatum.Early divergence of the Sesamum genus(48.5–19.7 million years ago)during the Tertiary period and its ancient phylogenic position within eudicots were observed.Pan-genome analysis revealed 9164 core gene families in the 7Sesamumspecies.These families are significantly enriched in variousmetabolic pathways,including fatty acid(FA)metabolism and FA biosynthesis.Structural variations in SiPT1 and SiDT1 within the phosphatidyl ethanolamine-binding protein gene family lead to the genomic evolution of plant-architecture and inflorescence-development phenotypes in Sesamum.A genome-wide association study(GWAS)of an interspecific population and genome comparisons revealed a long terminal repeat insertion and a sequence deletion inDIR genes of wildSesamum angustifoliumand cultivated sesame,respectively;both variations independently cause high susceptibility toFusariumwilt disease.A GWAS of 560 sesame accessions combined with an overexpression study confirmed that the NAC1andPPOgenes play an important role in upregulating oil content of sesame.Our study provides high-quality genomic resources for cultivated and wild Sesamum species and insights that can improve molecular breeding strategies for sesame and other oilseed crops. 展开更多
关键词 Sesamum genome evolution structural variation plant architecture Fusarium wilt disease oil content
原文传递
The Hardy Rubber Tree Genome Provides Insights into the Evolution of Polyisoprene Biosynthesis 被引量:27
3
作者 Ta-na Wuyun Lin Wang +28 位作者 Huimin Liu Xuewen Wang Liangsheng Zhang Jeffrey L. Bennetzen Tiezhu Li Lirong Yang Panfeng Liu Lanying Du Lu Wang Mengzhen Huang Jun Qing Iili Zhu Wenquan Bao Hongguo Li Qingxin Du Jingle Zhu Hong Yang Shuguang Yang Hui Liu Hui Yue Jiang Hu Suoliang Yu Yu Tian Fan Liang Jingjing Hu Depeng Wang Ruiwen Gao Dejun Li Hongyan Du 《Molecular Plant》 SCIE CAS CSCD 2018年第3期429-442,共14页
Eucommia ulmoides, also called hardy rubber tree, is an economically important tree; however, the lack of its genome sequence restricts the fundamental biological research and applied studies of this plant species. He... Eucommia ulmoides, also called hardy rubber tree, is an economically important tree; however, the lack of its genome sequence restricts the fundamental biological research and applied studies of this plant species. Here, we present a high-quality assembly of its ~l.2-Gb genome (scaffold N50 = 1.88 Mb) with at least 26 723 predicted genes for E. ulmoides, the first sequenced genome of the order Garryales, which was obtained using an integrated strategy combining Illumina sequencing, PacBio sequencing, and BioNano mapping. As a sister taxon to lamiids and campanulids, E. ulmoides underwent an ancient genome triplication shared by core eudicots but no further whole-genome duplication in the last ~125 million years. E. ulmoides exhibits high expression levels and/or gene number expansion for multiple genes involved in stress responses and the biosynthesis of secondary metabolites, which may account for its considerable environmental adaptability. In contrast to the rubber tree (Hevea brasiliensis), which produces cis-polyisoprene, E. ulmoides has evolved to synthe- size long-chain trans-polyisoprene via farnesyl diphosphate synthases (FPSs). Moreover, FPS and rub- ber elongation factor/small rubber particle protein gene families were expanded independently from the H. brasiliensis lineage. These results provide new insights into the biology of E. ulmoides and the origin of polyisoprene biosynthesis. 展开更多
关键词 Eucommia ulmoides genome environmental adaptability eucommia rubber
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部