The progress of a microbeam facility in the Institute of Plasma Physics was discussed in this paper. This kind of equipment can supply single-particle beam which may be implanted into cells in micrometer-radius and me...The progress of a microbeam facility in the Institute of Plasma Physics was discussed in this paper. This kind of equipment can supply single-particle beam which may be implanted into cells in micrometer-radius and measured by a new outstanding detector among global microbeam systems. Measurements by some plain targets showed that the highest current after the accelerator tube can be larger than 20 /μA, the H_2^+ current before the second bending magnet is near 0.9 /μA, the current after the second bending magnet is near 0.8 μA, and the current of the beam line (after a 2-mm diameter aperture) is near 0.25 nA which is enough for the single-particle microbeam experiment. It took scientists 3 months to do their microbeam experiment after setting up the accelerator beam line and get the microbeam from this equipment. Two pre-collimators were installed between the 2-mm diameter aperture and the collimator to survey the beam. Tracks on the CR39 film etched in the solution of NaOH showed that the beam can go through the collimator including a 10 μm diameter aperture and the 3.5 μm thick vacuum sealing film (Mylar). A new method, which is called optimization of the beam quality, was put forward in this paper, in order to get smaller diameter of beam-spot in microbeam system.展开更多
The Experiments, methods and results of obtaining micron beam in the Microbeam Facility of the Institute of Plasma Physics were discussed in this paper. The H+2 beam was accelerated by the Van de GraafF electrostatic ...The Experiments, methods and results of obtaining micron beam in the Microbeam Facility of the Institute of Plasma Physics were discussed in this paper. The H+2 beam was accelerated by the Van de GraafF electrostatic accelerator, and the collimator at the end of the beam line is a 60 μm thick stainless steel chip. And as a result, particle tracks on the solid track probes (CR39 film) etched in the solution of NaOH showed that the beam can go through the collimator with a small aperure (2000, 300, 55, 30, or 10 μm) and 3.5 μm thick vacuum film (Mylar). Besides the CR39 method, the beam was measured by an energy spectrum detector after the 10 μm diameter aperture and the 3.5 μm thick vacuum film too.展开更多
The rapid development of high-intensity laser-generated particle and photon secondary sources has attracted widespread interest during the last 20 years not only due to fundamental science research but also because of...The rapid development of high-intensity laser-generated particle and photon secondary sources has attracted widespread interest during the last 20 years not only due to fundamental science research but also because of the important applications of this developing technology.For instance,the generation of relativistic particle beams,betatron-type coherent X-ray radiation and high harmonic generation have attracted interest from various fields of science and technology owing to their diverse applications in biomedical,material science,energy,space,and security applications.In the field of biomedical applications in particular,laser-driven particle beams as well as laser-driven X-ray sources are a promising field of study.This article looks at the research being performed at the Institute of Plasma Physics and Lasers(IPPL)of the Hellenic Mediterranean University Research Centre.The recent installation of the ZEUS 45 TW laser system developed at IPPL offers unique opportunities for research in laser-driven particle and X-ray sources.This article provides information about the facility and describes initial experiments performed for establishing the baseline platforms for secondary plasma sources.展开更多
At the EAST tokamak, the ion temperature(T_(i)) is observed to be clamped around 1.25 keV in electron cyclotron resonance(ECR)-heated plasmas, even at core electron temperatures up to 10 keV(depending on the ECR heati...At the EAST tokamak, the ion temperature(T_(i)) is observed to be clamped around 1.25 keV in electron cyclotron resonance(ECR)-heated plasmas, even at core electron temperatures up to 10 keV(depending on the ECR heating power and the plasma density). This clamping results from the lack of direct ion heating and high levels of turbulence-driven transport. Turbulent transport analysis shows that trapped electron mode and electron temperature gradient-driven modes are the most unstable modes in the core of ECR-heated H-mode plasmas. Nevertheless, recently it was found that the T_(i)/T_(e)ratio can increase further with the fraction of the neutral beam injection(NBI) power, which leads to a higher core ion temperature(Ti0). In NBI heating-dominant H-mode plasmas, the ion temperature gradient-driven modes become the most unstable modes.Furthermore, a strong and broad internal transport barrier(ITB) can form at the plasma core in high-power NBI-heated H-mode plasmas when the T_(i)/T_(e)ratio approaches ~1, which results in steep core Teand Tiprofiles, as well as a peaked neprofile. Power balance analysis shows a weaker Teprofile stiffness after the formation of ITBs in the core plasma region, where Ticlamping is broken,and the core Tican increase further above 2 keV, which is 80% higher than the value of Ticlamping in ECR-heated plasmas. This finding proposes a possible solution to the problem of Ticlamping on EAST and demonstrates an advanced operational regime with the formation of a strong and broad ITB for future fusion plasmas dominated by electron heating.展开更多
This work explored possibilities of biodegradable magnesium alloy Mg-3Y preparation by two modern powder metallurgy techniques–spark plasma sintering(SPS)and selective laser melting(SLM).The powder material was conso...This work explored possibilities of biodegradable magnesium alloy Mg-3Y preparation by two modern powder metallurgy techniques–spark plasma sintering(SPS)and selective laser melting(SLM).The powder material was consolidated by both methods utilising optimised parameters,which led to very low porosity(∼0.3%)in the SLM material and unmeasurably low porosity in the SPS material.The main aim of the study was the thorough microstructure characterisation and interrelation between the microstructure and the functional properties,such as mechanical strength,deformability,and corrosion resistance.Both materials showed comparable strength of∼110 MPa in tension and compression and relatively good deformability of∼9%and∼21%for the SLM and SPS materials,respectively.The corrosion resistance of the SPS material in 0.1 M NaCl solution was superior to the SLM one and comparable to the conventional extruded material.The digital image correlation during loading and the cross-section analysis of the corrosion layers revealed that the residual porosity and large strained grains have the dominant negative effect on the functional properties of the SLM material.On the other hand,one of the primary outcomes of this study is that the SPS consolidation method is very effective in the preparation of the W3 biodegradable alloy,resulting in material with convenient mechanical and degradation properties that might find practical applications.展开更多
First mirror(FM)cleaning,using radio frequency(RF)plasma,has been proposed to recover FM reflectivity in nuclear fusion reactors such as the International Thermonuclear Experimental Reactor(ITER).To investigate the in...First mirror(FM)cleaning,using radio frequency(RF)plasma,has been proposed to recover FM reflectivity in nuclear fusion reactors such as the International Thermonuclear Experimental Reactor(ITER).To investigate the influence of simultaneous cleaning of two mirrors on mirror cleaning efficiency and uniformity,experiments involving single-mirror cleaning and dual-mirror cleaning were conducted using RF capacitively coupled plasma in the laboratory.For the test and simultaneous cleaning of two mirrors,the FM and second mirror(SM),both measuring 110 mm×80 mm,were placed inside the first mirror unit(FMU).They were composed of 16 mirror samples,each with a dimension of 27.5 mm×20 mm.These mirror samples consist of a titanium-zirconium-molybdenum alloy substrate,a 500 nm Mo intermediate layer and a 30 nm Al_(2)O_(3) surface coating as a proxy for Be impurities.The cleaning of a single first mirror(SFM)and the simultaneous cleaning of the FM and SM(DFM and DSM)lasted for 9 h using Ar plasma at a pressure of 1 Pa.The total reflectivity of mirror samples on the DSM did not fully recover and varied with location,with a self-bias of−140 V.With a self-bias of−300 V,the total reflectivity of mirror samples on the SFM and DFM was fully recovered.The energy dispersive spectrometer results demonstrated that the Al_(2)O_(3) coating had been completely removed from these mirror samples.However,the mass loss of each mirror sample on the SFM and DFM before and after cleaning varied depending on its location,with higher mass loss observed for mirror samples located in the corners and lower loss for those in the center.Compared with SM cleaning,the simultaneous cleaning of two mirrors reduced the difference between the highest and lowest mass loss.Furthermore,this mass loss for the mirror samples of the DFM facing the DSM was increased.This indicated that mirror samples cleaned face to face in the FMU simultaneously could influence each other,highlighting the need for special attention in future studies.展开更多
The trajectory of the compact torus(CT)within a tokamak discharge is crucial to fueling.In this study,we developed a penetration model with a vacuum magnetic field region to accurately determine CT trajectories in tok...The trajectory of the compact torus(CT)within a tokamak discharge is crucial to fueling.In this study,we developed a penetration model with a vacuum magnetic field region to accurately determine CT trajectories in tokamak discharges.This model was used to calculate the trajectory and penetration parameters of CT injections by applying both perpendicular and tangential injection schemes in both HL-2A and ITER tokamaks.For perpendicular injection along the tokamak's major radius direction from the outboard,CTs with the same injection parameters exhibited a 0.08 reduction in relative penetration depth when injected into HL-2A and a 0.13reduction when injected into ITER geometry when considering the vacuum magnetic field region compared with cases where this region was not considered.In addition,we proposed an optimization method for determining the CT's initial injection velocity to accurately calculate the initial injection velocity of CTs for central fueling in tokamaks.Furthermore,this paper discusses schemes for the tangential injection of CT into tokamak discharges.The optimal injection angle and CT magnetic moment direction for injection into both HL-2A and ITER were determined through numerical simulations.Finally,the kinetic energy loss occurring when the CT penetrated the vacuum magnetic field region in ITER was reduced byΔEk=975.08 J by optimizing the injection angle for the CT injected into ITER.These results provide valuable insights for optimizing injection angles in fusion experiments.Our model closely represents actual experimental scenarios and can assist the design of CT parameters.展开更多
Comprehensive understanding and possible control of parametric instabilities in the context of inertial confinement fusion (ICF) remains achallenging task. The details of the absorption processes and the detrimental e...Comprehensive understanding and possible control of parametric instabilities in the context of inertial confinement fusion (ICF) remains achallenging task. The details of the absorption processes and the detrimental effects of hot electrons on the implosion process require as mucheffort on the experimental side as on the theoretical and simulation side. This paper describes a proposal for experimental studies on nonlinearinteraction of intense laser pulses with a high-temperature plasma under conditions corresponding to direct-drive ICF schemes. We propose todevelop a platform for laser-plasma interaction studies based on foam targets. Parametric instabilities are sensitive to the bulk plasma temperatureand the density scale length. Foam targets are sufficiently flexible to allow control of these parameters. However, investigationsconducted on small laser facilities cannot be extrapolated in a reliable way to real fusion conditions. It is therefore necessary to performexperiments at a multi-kilojoule energy level on medium-scale facilities such asOMEGAor SG-III. An example of two-plasmon decay instabilityexcited in the interaction of two laser beams is considered.展开更多
The physics of laser-plasma interaction is studied on the Shenguang III prototype laser facility under conditions relevant to inertial confinement fusion designs.A sub-millimeter-size underdense hot plasma is created ...The physics of laser-plasma interaction is studied on the Shenguang III prototype laser facility under conditions relevant to inertial confinement fusion designs.A sub-millimeter-size underdense hot plasma is created by ionization of a low-density plastic foam by four high-energy(3.2 kJ)laser beams.An interaction beam is fired with a delay permitting evaluation of the excitation of parametric instabilities at different stages of plasma evolution.Multiple diagnostics are used for plasma characterization,scattered radiation,and accelerated electrons.The experimental results are analyzed with radiation hydrodynamic simulations that take account of foam ionization and homogenization.The measured level of stimulated Raman scattering is almost one order of magnitude larger than that measured in experiments with gasbags and hohlraums on the same installation,possibly because of a greater plasma density.Notable amplification is achieved in high-intensity speckles,indicating the importance of implementing laser temporal smoothing techniques with a large bandwidth for controlling laser propagation and absorption.展开更多
Quasi-coherent micro-instabilities is one of the key topics of magnetic confinement fusion. This work focuses on the quasi-coherent spectra of ion temperature gradient(ITG) and trapped-electron-mode instabilities usin...Quasi-coherent micro-instabilities is one of the key topics of magnetic confinement fusion. This work focuses on the quasi-coherent spectra of ion temperature gradient(ITG) and trapped-electron-mode instabilities using newly developed far-forward collective scattering measurements within ohmic plasmas in the J-TEXT tokamak.The ITG mode is characterized by frequencies ranging from 30 to 100 k Hz and wavenumbers(k_(θρs)) less than 0.3. Beyond a critical plasma density threshold, the ITG mode undergoes a bifurcation, which is marked by a reduction in frequency and an enhancement in amplitude. Concurrently, enhancements in ion energy loss and degradation in confinement are observed. This ground-breaking discovery represents the first instance of direct experimental evidence that establishes a clear link between ITG instability and ion thermal transport.展开更多
Heat diffusion across a non-local quasi-stochastic magnetic field in tokamak plasma is numerically studied. The perturbed magnetic field is found to be a key factor in influencing effective radial heat conductivity wh...Heat diffusion across a non-local quasi-stochastic magnetic field in tokamak plasma is numerically studied. The perturbed magnetic field is found to be a key factor in influencing effective radial heat conductivity whether the magnetic field is stochastic or not. Being different from previous work, a non-local perturbed magnetic field is used. Analytical results and numerical simulation results are compared between the conditions with a full and a quasi-perturbed stochastic field. The analytical results are found to be still consistent with numerical simulation results when the perturbed field is quasi-stochastic.展开更多
Municipal solid waste incinerator (MSWI) fly ash with high basicity (about 1.68) was vitrified in a thermal plasma melting furnace system. Through the thermal plasma treatment, the vitrified product (slag) with ...Municipal solid waste incinerator (MSWI) fly ash with high basicity (about 1.68) was vitrified in a thermal plasma melting furnace system. Through the thermal plasma treatment, the vitrified product (slag) with amorphous dark glassy structure was obtained, and the leachability of hazardous metals in slag was significantly reduced. Meanwhile, it was found that the cooling rate affects significantly the immobility of heavy metals in slag. The mass distribution of heavy metals (Zn, Cd, Cr, Pb, As, Hg) was investigated in residual products (slag, secondary residues and flue gas), in order to analyze the behavior of heavy metals in thermal plasma atmosphere. Heavy metal species with low boiling points accounting for the major fraction of their input-mass were adsorbed in secondary residues by pollution abatement devices, while those with high boiling points tended to be encapsulated in slag.展开更多
Grafting of polymer of methyl methacrylate (PMMA) onto titanium dioxide powder is investigated in this paper. The graft polymerization reaction is induced by dielectric-barrier- discharge produced N2 plasma treatmen...Grafting of polymer of methyl methacrylate (PMMA) onto titanium dioxide powder is investigated in this paper. The graft polymerization reaction is induced by dielectric-barrier- discharge produced N2 plasma treatment of titanium dioxide surfaces. IR, XPS and TGA results show that PMMA is grafted onto the surfaces of titanium dioxide powder. And crystal structure of the titanium dioxide powder observed with XRD spectra is unchanged after plasma graft polymerization.展开更多
ZrN fihns were deposited on Si(111) and M2 steel by inductively coupled plasma (ICP)-enhanced RF magnetron sputtering. The effect of ICP power on the microstructure, mechanical properties and corrosion resistance ...ZrN fihns were deposited on Si(111) and M2 steel by inductively coupled plasma (ICP)-enhanced RF magnetron sputtering. The effect of ICP power on the microstructure, mechanical properties and corrosion resistance of ZrN films was investigated. When the ICP power is below 300 W, the ZrN films show a columnar structure. With the increase of ICP power, the texture coefficient (To) of the (111) plane, the nanohardness and elastic modulus of the films increase and reach the maximum at a power of 300 W. As the ICP Power exceeds 300 W, the films exhibit a ZrN and ZrNx mixed crystal structure without columnar grain while the nanohardness and elastic modulus of the films decrease. All the ZrN coated samples show a higher corrosion resistance than that of the bare M2 steel substrate in 3.5% NaCl electrolyte. The nanohardness and elastic modulus mostly depend on the crystalline structure and Tc of ZrN(111).展开更多
First lithium coating associated with ion cyclotron range of frequency (ICRF) plasma was performed successfully in EAST. Results in reduction of both residual impurity and deuterium in the vacuum vessel were obtaine...First lithium coating associated with ion cyclotron range of frequency (ICRF) plasma was performed successfully in EAST. Results in reduction of both residual impurity and deuterium in the vacuum vessel were obtained. Particularly the partial pressure of deuterium after the lithium coating was reduced by about a factor of 5. Impurity radiation in the plasma was reduced and electron temperature increased by about 50%. Moreover, reproducible plasma discharges with high parameters, such as higher plasma current and density, could be easily obtained. These results showed that plasma performance was improved. Even though only 2 g of lithium were injected, the effective lifetime of the Li film was raised up to 40 shots.展开更多
Amorphous spherical silica powders were prepared by inductively coupled thermal plasma treatment at a radio frequency of 36.2 MHz. The effects of the added content of hydrogen and nitrogen into argon(serving as the sh...Amorphous spherical silica powders were prepared by inductively coupled thermal plasma treatment at a radio frequency of 36.2 MHz. The effects of the added content of hydrogen and nitrogen into argon(serving as the sheath gas), as well as the carrier gas flow rate, on the spheroidization rate of silica powders, were investigated. The prepared silica powders before and after plasma treatment were examined by scanning electron microscopy, X-ray diffraction, and laser granulometric analysis. Results indicated that the average size of the silica particles increased, and the transformation of crystals into the amorphous state occurred after plasma treatment. Discharge image processing was employed to analyze the effect of the plasma temperature field on the spheroidization rate. The spheroidization rate of the silica powder increased with the increase of the hydrogen content in the sheath gas. On the other hand, the spheroidization rate of the silica power first increased and then decreased with the increase of the nitrogen content in the sheath gas. Moreover, the amorphous content increased with the increase of the spheroidization rate of the silica powder.展开更多
Municipal solid waste incinerator (MSWI) fly ash was melted using a set of direct current (DC) arc plasma furnace system for the first time in China. At a feed-rate of flying ash of 80 kg/h, the temperature at the...Municipal solid waste incinerator (MSWI) fly ash was melted using a set of direct current (DC) arc plasma furnace system for the first time in China. At a feed-rate of flying ash of 80 kg/h, the temperature at the gas outlet was above 1300℃. Dioxins in the off-gas were recorded as 0.029 ng I-TEQ/Nma (international toxic equivalent, I-TEQ), well below 0.5 ngTEQ/Nm^3(toxic equivalent, TEQ), while those in the melted product (slag) were 0.00035 ng/g I-TEQ. Molten slag from the furnace showed excellent resistance against the leaching of heavy metals. These results prove that the plasma furnace is effective for the detoxification and stabilization of MSWI fly ash.展开更多
An investigation was made into polystyrene (PS) grafted onto nanometre silicon carbide (SIC) particles. In our experiment, the grafting polymerization reaction was induced by a radio frequency (RF) inductively c...An investigation was made into polystyrene (PS) grafted onto nanometre silicon carbide (SIC) particles. In our experiment, the grafting polymerization reaction was induced by a radio frequency (RF) inductively coupled plasma (ICP) treatment of the nanometre powder. FTIR (Fourier transform infrared spectrum) and XPS (X-ray photoelectron spectroscopy) results reveal that PS is grafted onto the surface of silicon carbide powder. An analysis is presented on the effectiveness of this approach as a function of plasma operating variables including the plasma treating power, treating time, and grafting reaction temperature and time.展开更多
The device of acetylene production by hydrogen (H-) plasma pyrolysis coal is examined and developed not only for studying the application of low temperature plasma but also for studying the clean use of coal. The po...The device of acetylene production by hydrogen (H-) plasma pyrolysis coal is examined and developed not only for studying the application of low temperature plasma but also for studying the clean use of coal. The power-supply control system is used to ensure supplying a steady energy to generate and maintain the plasma electric arc of the device. The hardware configuration and the software design of the system are described in this paper. Verified by experiments, this system can meet the requirements of real-time performance, reliability and extensibility for the device.展开更多
A predictive calculation is carried out for neutral beam heating of fusion plasmas in EAST by using NUBEAM code under certain plasma conditions. Results calculated are analyzed for different plasma parameters. Relatio...A predictive calculation is carried out for neutral beam heating of fusion plasmas in EAST by using NUBEAM code under certain plasma conditions. Results calculated are analyzed for different plasma parameters. Relations between major plasma parameters, such as density and temperature, are obtained and key physical processes in the neutral beam heating, including beam power deposition, trapped fraction, heating efficiency, and power loss, are simulated. Other physical processes, such as current-drive, toroidal rotation and neutron emission, are also discussed.展开更多
基金The project supported by the Natural Science Foundation Committee in Anhui Province, China (No. 01046201)
文摘The progress of a microbeam facility in the Institute of Plasma Physics was discussed in this paper. This kind of equipment can supply single-particle beam which may be implanted into cells in micrometer-radius and measured by a new outstanding detector among global microbeam systems. Measurements by some plain targets showed that the highest current after the accelerator tube can be larger than 20 /μA, the H_2^+ current before the second bending magnet is near 0.9 /μA, the current after the second bending magnet is near 0.8 μA, and the current of the beam line (after a 2-mm diameter aperture) is near 0.25 nA which is enough for the single-particle microbeam experiment. It took scientists 3 months to do their microbeam experiment after setting up the accelerator beam line and get the microbeam from this equipment. Two pre-collimators were installed between the 2-mm diameter aperture and the collimator to survey the beam. Tracks on the CR39 film etched in the solution of NaOH showed that the beam can go through the collimator including a 10 μm diameter aperture and the 3.5 μm thick vacuum sealing film (Mylar). A new method, which is called optimization of the beam quality, was put forward in this paper, in order to get smaller diameter of beam-spot in microbeam system.
基金The project supported by the National Science Foundation of in Anhui Province,China(No.01046201)
文摘The Experiments, methods and results of obtaining micron beam in the Microbeam Facility of the Institute of Plasma Physics were discussed in this paper. The H+2 beam was accelerated by the Van de GraafF electrostatic accelerator, and the collimator at the end of the beam line is a 60 μm thick stainless steel chip. And as a result, particle tracks on the solid track probes (CR39 film) etched in the solution of NaOH showed that the beam can go through the collimator with a small aperure (2000, 300, 55, 30, or 10 μm) and 3.5 μm thick vacuum film (Mylar). Besides the CR39 method, the beam was measured by an energy spectrum detector after the 10 μm diameter aperture and the 3.5 μm thick vacuum film too.
基金support of this work by the project‘ELI-LASERLAB Europe Synergy,Hi PER&IPERIONCH.gr’(MIS 5002735)which is implemented under the Action‘Reinforcement of the Research and Innovation Infrastructure’funded by the Operational Programme‘Competitiveness,Entrepreneurship and Innovation’(NSRF 2014–2020)+2 种基金co-financed by Greece and the European Union(European Regional Development Fund)supported by computational time granted from the Greek Research and Technology Network(GRNET)in the National HPC facility,ARIS,under project ID pr009023-La MIPla S IIIcofinanced by the European Regional Development Fund of the European Union and Greek national funds through the Operational Program Competitiveness,Entrepreneurship,and Innovation,under the call Research–Create–Innovate(project code:T1EDK-04549,project title:Development of a coherent X-ray multispectral microscopy system)。
文摘The rapid development of high-intensity laser-generated particle and photon secondary sources has attracted widespread interest during the last 20 years not only due to fundamental science research but also because of the important applications of this developing technology.For instance,the generation of relativistic particle beams,betatron-type coherent X-ray radiation and high harmonic generation have attracted interest from various fields of science and technology owing to their diverse applications in biomedical,material science,energy,space,and security applications.In the field of biomedical applications in particular,laser-driven particle beams as well as laser-driven X-ray sources are a promising field of study.This article looks at the research being performed at the Institute of Plasma Physics and Lasers(IPPL)of the Hellenic Mediterranean University Research Centre.The recent installation of the ZEUS 45 TW laser system developed at IPPL offers unique opportunities for research in laser-driven particle and X-ray sources.This article provides information about the facility and describes initial experiments performed for establishing the baseline platforms for secondary plasma sources.
基金supported by National Natural Science Foundation of China(No.12135015)the Users with Excellence Program of Hefei Science Center,CAS(No.2021HSCUE012)+3 种基金the National Key R&D Program of China(No.2022Y FE03010003)the Major Science and Technology Infrastructure Maintenance and Reconstruction Projects of the Chinese Academy of Sciences 2021the Special Funds for Improving Conditions for Scientific Research in National Scientific Institutions 2022the China Scholarship Council。
文摘At the EAST tokamak, the ion temperature(T_(i)) is observed to be clamped around 1.25 keV in electron cyclotron resonance(ECR)-heated plasmas, even at core electron temperatures up to 10 keV(depending on the ECR heating power and the plasma density). This clamping results from the lack of direct ion heating and high levels of turbulence-driven transport. Turbulent transport analysis shows that trapped electron mode and electron temperature gradient-driven modes are the most unstable modes in the core of ECR-heated H-mode plasmas. Nevertheless, recently it was found that the T_(i)/T_(e)ratio can increase further with the fraction of the neutral beam injection(NBI) power, which leads to a higher core ion temperature(Ti0). In NBI heating-dominant H-mode plasmas, the ion temperature gradient-driven modes become the most unstable modes.Furthermore, a strong and broad internal transport barrier(ITB) can form at the plasma core in high-power NBI-heated H-mode plasmas when the T_(i)/T_(e)ratio approaches ~1, which results in steep core Teand Tiprofiles, as well as a peaked neprofile. Power balance analysis shows a weaker Teprofile stiffness after the formation of ITBs in the core plasma region, where Ticlamping is broken,and the core Tican increase further above 2 keV, which is 80% higher than the value of Ticlamping in ECR-heated plasmas. This finding proposes a possible solution to the problem of Ticlamping on EAST and demonstrates an advanced operational regime with the formation of a strong and broad ITB for future fusion plasmas dominated by electron heating.
基金supported by the Czech Science Foundation under project no.22-21122JPartial financial support from the Ministry of Health of the Czech Republic under the grant Nr.20-08-00150+2 种基金partial financial support from the Charles University Grant Agency under project number 389422partial financial support from the Science Grant Agency of the Slovak Republic through project No.1/0153/21faculty specific research project FSI-S-23-8340.
文摘This work explored possibilities of biodegradable magnesium alloy Mg-3Y preparation by two modern powder metallurgy techniques–spark plasma sintering(SPS)and selective laser melting(SLM).The powder material was consolidated by both methods utilising optimised parameters,which led to very low porosity(∼0.3%)in the SLM material and unmeasurably low porosity in the SPS material.The main aim of the study was the thorough microstructure characterisation and interrelation between the microstructure and the functional properties,such as mechanical strength,deformability,and corrosion resistance.Both materials showed comparable strength of∼110 MPa in tension and compression and relatively good deformability of∼9%and∼21%for the SLM and SPS materials,respectively.The corrosion resistance of the SPS material in 0.1 M NaCl solution was superior to the SLM one and comparable to the conventional extruded material.The digital image correlation during loading and the cross-section analysis of the corrosion layers revealed that the residual porosity and large strained grains have the dominant negative effect on the functional properties of the SLM material.On the other hand,one of the primary outcomes of this study is that the SPS consolidation method is very effective in the preparation of the W3 biodegradable alloy,resulting in material with convenient mechanical and degradation properties that might find practical applications.
基金supported by the National Key R&D Project of China(No.2022YFE03030000)National Natural Science Foundation of China(Nos.11975269,12275306 and 12075279)+3 种基金the Youth Innovation Promotion Association of the Chinese Academy of Sciences(No.2022452)the Anhui Provincial Natural Science Foundation(No.2208085J40)the CASHIPS Director’s Fund(Nos.YZJJQY202302 and BJPY2023B03)the Comprehensive Research Facility for Fusion Technology Program of China(No.2018-000052-73-01-001228).
文摘First mirror(FM)cleaning,using radio frequency(RF)plasma,has been proposed to recover FM reflectivity in nuclear fusion reactors such as the International Thermonuclear Experimental Reactor(ITER).To investigate the influence of simultaneous cleaning of two mirrors on mirror cleaning efficiency and uniformity,experiments involving single-mirror cleaning and dual-mirror cleaning were conducted using RF capacitively coupled plasma in the laboratory.For the test and simultaneous cleaning of two mirrors,the FM and second mirror(SM),both measuring 110 mm×80 mm,were placed inside the first mirror unit(FMU).They were composed of 16 mirror samples,each with a dimension of 27.5 mm×20 mm.These mirror samples consist of a titanium-zirconium-molybdenum alloy substrate,a 500 nm Mo intermediate layer and a 30 nm Al_(2)O_(3) surface coating as a proxy for Be impurities.The cleaning of a single first mirror(SFM)and the simultaneous cleaning of the FM and SM(DFM and DSM)lasted for 9 h using Ar plasma at a pressure of 1 Pa.The total reflectivity of mirror samples on the DSM did not fully recover and varied with location,with a self-bias of−140 V.With a self-bias of−300 V,the total reflectivity of mirror samples on the SFM and DFM was fully recovered.The energy dispersive spectrometer results demonstrated that the Al_(2)O_(3) coating had been completely removed from these mirror samples.However,the mass loss of each mirror sample on the SFM and DFM before and after cleaning varied depending on its location,with higher mass loss observed for mirror samples located in the corners and lower loss for those in the center.Compared with SM cleaning,the simultaneous cleaning of two mirrors reduced the difference between the highest and lowest mass loss.Furthermore,this mass loss for the mirror samples of the DFM facing the DSM was increased.This indicated that mirror samples cleaned face to face in the FMU simultaneously could influence each other,highlighting the need for special attention in future studies.
基金supported by the National Magnetic Confinement Fusion Science Program of China(Nos.2022YFE03100004 and 2022YFE03060003)National Natural Science Foundation of China(Nos.12375226,12175227 and 11875255)the China Postdoctoral Science Foundation(No.2022M723066).
文摘The trajectory of the compact torus(CT)within a tokamak discharge is crucial to fueling.In this study,we developed a penetration model with a vacuum magnetic field region to accurately determine CT trajectories in tokamak discharges.This model was used to calculate the trajectory and penetration parameters of CT injections by applying both perpendicular and tangential injection schemes in both HL-2A and ITER tokamaks.For perpendicular injection along the tokamak's major radius direction from the outboard,CTs with the same injection parameters exhibited a 0.08 reduction in relative penetration depth when injected into HL-2A and a 0.13reduction when injected into ITER geometry when considering the vacuum magnetic field region compared with cases where this region was not considered.In addition,we proposed an optimization method for determining the CT's initial injection velocity to accurately calculate the initial injection velocity of CTs for central fueling in tokamaks.Furthermore,this paper discusses schemes for the tangential injection of CT into tokamak discharges.The optimal injection angle and CT magnetic moment direction for injection into both HL-2A and ITER were determined through numerical simulations.Finally,the kinetic energy loss occurring when the CT penetrated the vacuum magnetic field region in ITER was reduced byΔEk=975.08 J by optimizing the injection angle for the CT injected into ITER.These results provide valuable insights for optimizing injection angles in fusion experiments.Our model closely represents actual experimental scenarios and can assist the design of CT parameters.
基金The authors acknowledge support from the European Regional Development Fund for the following projects:HiFI(No.CZ.02.1.01/0.0/0.0/15_003/0000449),CAAS(No.CZ.02.1.01/0.0/0.0/16_019/0000778),ADONIS(No.CZ.02.1.01/0.0/0.0/16_019/0000789),and ELITAS(No.CZ.02.1.01/0.0/0.0/16_013/0001793)This work has received funding from the European Union Horizon 2020 Research and Innovation Programme under Grant Agreement No.633053(EUROfusion Project No.CfP-AWP17-IFE-CEA-01)+2 种基金Computational resources were provided by the MetaCentrum under the LM2010005 projectIT4InnovationsCentre of Excellence under the CZ.1.05/1.1.00/02.0070 and LM2011033 projectsthe ECLIPSE cluster of ELI-Beamlines.The EPOCH code was developed as part of the UK EPSRC-funded EP/G054940/1 project.
文摘Comprehensive understanding and possible control of parametric instabilities in the context of inertial confinement fusion (ICF) remains achallenging task. The details of the absorption processes and the detrimental effects of hot electrons on the implosion process require as mucheffort on the experimental side as on the theoretical and simulation side. This paper describes a proposal for experimental studies on nonlinearinteraction of intense laser pulses with a high-temperature plasma under conditions corresponding to direct-drive ICF schemes. We propose todevelop a platform for laser-plasma interaction studies based on foam targets. Parametric instabilities are sensitive to the bulk plasma temperatureand the density scale length. Foam targets are sufficiently flexible to allow control of these parameters. However, investigationsconducted on small laser facilities cannot be extrapolated in a reliable way to real fusion conditions. It is therefore necessary to performexperiments at a multi-kilojoule energy level on medium-scale facilities such asOMEGAor SG-III. An example of two-plasmon decay instabilityexcited in the interaction of two laser beams is considered.
基金This project was partially supported by the Advanced Research Using High Intensity Laser Produced Photons and Particles(ADONIS)project(Grant No.CZ.02.1.01/0.0/0.0/16_019/0000789)the CAAS project(Grant No.CZ.02.1.01/0.0/0.0/16_019/0000778)+3 种基金both from the European Regional Development FundThe results of the LQ1606 project were partially obtained with the financial support from the Ministry of Education,Youth and Sports as part of targeted support from the National Programme of Sustainability IIThe authors acknowledge support from the National Natural Science Foundation of China(Grant Nos.11775033,11875241,11975215,11905204,12035002)the Laser Fusion Research Center Funds for Young Talents(Grant No.RCFPD3-2019-6).
文摘The physics of laser-plasma interaction is studied on the Shenguang III prototype laser facility under conditions relevant to inertial confinement fusion designs.A sub-millimeter-size underdense hot plasma is created by ionization of a low-density plastic foam by four high-energy(3.2 kJ)laser beams.An interaction beam is fired with a delay permitting evaluation of the excitation of parametric instabilities at different stages of plasma evolution.Multiple diagnostics are used for plasma characterization,scattered radiation,and accelerated electrons.The experimental results are analyzed with radiation hydrodynamic simulations that take account of foam ionization and homogenization.The measured level of stimulated Raman scattering is almost one order of magnitude larger than that measured in experiments with gasbags and hohlraums on the same installation,possibly because of a greater plasma density.Notable amplification is achieved in high-intensity speckles,indicating the importance of implementing laser temporal smoothing techniques with a large bandwidth for controlling laser propagation and absorption.
基金partially supported by the National Natural Science Foundation of China (Grant Nos. 0204131240 and 11575067)the Shenzhen Municipal Collaborative Innovation Technology ProgramInternational Science and Technology (S&T) Cooperation Project (Grant No. GJHZ20220913142609017)the “Fourteenth Five-Year Plan” Basic Technological Research Project (Grant No. JSZL2022XXXX001)。
文摘Quasi-coherent micro-instabilities is one of the key topics of magnetic confinement fusion. This work focuses on the quasi-coherent spectra of ion temperature gradient(ITG) and trapped-electron-mode instabilities using newly developed far-forward collective scattering measurements within ohmic plasmas in the J-TEXT tokamak.The ITG mode is characterized by frequencies ranging from 30 to 100 k Hz and wavenumbers(k_(θρs)) less than 0.3. Beyond a critical plasma density threshold, the ITG mode undergoes a bifurcation, which is marked by a reduction in frequency and an enhancement in amplitude. Concurrently, enhancements in ion energy loss and degradation in confinement are observed. This ground-breaking discovery represents the first instance of direct experimental evidence that establishes a clear link between ITG instability and ion thermal transport.
文摘Heat diffusion across a non-local quasi-stochastic magnetic field in tokamak plasma is numerically studied. The perturbed magnetic field is found to be a key factor in influencing effective radial heat conductivity whether the magnetic field is stochastic or not. Being different from previous work, a non-local perturbed magnetic field is used. Analytical results and numerical simulation results are compared between the conditions with a full and a quasi-perturbed stochastic field. The analytical results are found to be still consistent with numerical simulation results when the perturbed field is quasi-stochastic.
基金supported by the Knowledge Innovation Project in the Chinese Academy of Sciences(No.O45CF3A211)National Natural Science Foundation of China(No.21171169)
文摘Municipal solid waste incinerator (MSWI) fly ash with high basicity (about 1.68) was vitrified in a thermal plasma melting furnace system. Through the thermal plasma treatment, the vitrified product (slag) with amorphous dark glassy structure was obtained, and the leachability of hazardous metals in slag was significantly reduced. Meanwhile, it was found that the cooling rate affects significantly the immobility of heavy metals in slag. The mass distribution of heavy metals (Zn, Cd, Cr, Pb, As, Hg) was investigated in residual products (slag, secondary residues and flue gas), in order to analyze the behavior of heavy metals in thermal plasma atmosphere. Heavy metal species with low boiling points accounting for the major fraction of their input-mass were adsorbed in secondary residues by pollution abatement devices, while those with high boiling points tended to be encapsulated in slag.
文摘Grafting of polymer of methyl methacrylate (PMMA) onto titanium dioxide powder is investigated in this paper. The graft polymerization reaction is induced by dielectric-barrier- discharge produced N2 plasma treatment of titanium dioxide surfaces. IR, XPS and TGA results show that PMMA is grafted onto the surfaces of titanium dioxide powder. And crystal structure of the titanium dioxide powder observed with XRD spectra is unchanged after plasma graft polymerization.
文摘ZrN fihns were deposited on Si(111) and M2 steel by inductively coupled plasma (ICP)-enhanced RF magnetron sputtering. The effect of ICP power on the microstructure, mechanical properties and corrosion resistance of ZrN films was investigated. When the ICP power is below 300 W, the ZrN films show a columnar structure. With the increase of ICP power, the texture coefficient (To) of the (111) plane, the nanohardness and elastic modulus of the films increase and reach the maximum at a power of 300 W. As the ICP Power exceeds 300 W, the films exhibit a ZrN and ZrNx mixed crystal structure without columnar grain while the nanohardness and elastic modulus of the films decrease. All the ZrN coated samples show a higher corrosion resistance than that of the bare M2 steel substrate in 3.5% NaCl electrolyte. The nanohardness and elastic modulus mostly depend on the crystalline structure and Tc of ZrN(111).
基金support by National Natural Science Foundation of China (No.10705030)
文摘First lithium coating associated with ion cyclotron range of frequency (ICRF) plasma was performed successfully in EAST. Results in reduction of both residual impurity and deuterium in the vacuum vessel were obtained. Particularly the partial pressure of deuterium after the lithium coating was reduced by about a factor of 5. Impurity radiation in the plasma was reduced and electron temperature increased by about 50%. Moreover, reproducible plasma discharges with high parameters, such as higher plasma current and density, could be easily obtained. These results showed that plasma performance was improved. Even though only 2 g of lithium were injected, the effective lifetime of the Li film was raised up to 40 shots.
基金financially supported by the National Natural Science Foundation of China (Nos. 21377133, 11535003, and 11405221)
文摘Amorphous spherical silica powders were prepared by inductively coupled thermal plasma treatment at a radio frequency of 36.2 MHz. The effects of the added content of hydrogen and nitrogen into argon(serving as the sheath gas), as well as the carrier gas flow rate, on the spheroidization rate of silica powders, were investigated. The prepared silica powders before and after plasma treatment were examined by scanning electron microscopy, X-ray diffraction, and laser granulometric analysis. Results indicated that the average size of the silica particles increased, and the transformation of crystals into the amorphous state occurred after plasma treatment. Discharge image processing was employed to analyze the effect of the plasma temperature field on the spheroidization rate. The spheroidization rate of the silica powder increased with the increase of the hydrogen content in the sheath gas. On the other hand, the spheroidization rate of the silica power first increased and then decreased with the increase of the nitrogen content in the sheath gas. Moreover, the amorphous content increased with the increase of the spheroidization rate of the silica powder.
基金supported by the Knowledge Innovation Project in the Chinese Academy of Sciences(O45CF3A211)
文摘Municipal solid waste incinerator (MSWI) fly ash was melted using a set of direct current (DC) arc plasma furnace system for the first time in China. At a feed-rate of flying ash of 80 kg/h, the temperature at the gas outlet was above 1300℃. Dioxins in the off-gas were recorded as 0.029 ng I-TEQ/Nma (international toxic equivalent, I-TEQ), well below 0.5 ngTEQ/Nm^3(toxic equivalent, TEQ), while those in the melted product (slag) were 0.00035 ng/g I-TEQ. Molten slag from the furnace showed excellent resistance against the leaching of heavy metals. These results prove that the plasma furnace is effective for the detoxification and stabilization of MSWI fly ash.
文摘An investigation was made into polystyrene (PS) grafted onto nanometre silicon carbide (SIC) particles. In our experiment, the grafting polymerization reaction was induced by a radio frequency (RF) inductively coupled plasma (ICP) treatment of the nanometre powder. FTIR (Fourier transform infrared spectrum) and XPS (X-ray photoelectron spectroscopy) results reveal that PS is grafted onto the surface of silicon carbide powder. An analysis is presented on the effectiveness of this approach as a function of plasma operating variables including the plasma treating power, treating time, and grafting reaction temperature and time.
基金supported jointly by the Institute of Plasma Physics, Chinese Academy of Sciences, Zhejiang Juhua Group Corporation, Xinjiang Tianye Group Corporation and Fudan University
文摘The device of acetylene production by hydrogen (H-) plasma pyrolysis coal is examined and developed not only for studying the application of low temperature plasma but also for studying the clean use of coal. The power-supply control system is used to ensure supplying a steady energy to generate and maintain the plasma electric arc of the device. The hardware configuration and the software design of the system are described in this paper. Verified by experiments, this system can meet the requirements of real-time performance, reliability and extensibility for the device.
基金supported by National Natural Science Foundation of China (Nos.40731056, 10675029, 40605021 and 10575018)the Major State Basic Research Development Program of China (Nos.2009GB107001, 2008CB787103 and 2009GB105004)
文摘A predictive calculation is carried out for neutral beam heating of fusion plasmas in EAST by using NUBEAM code under certain plasma conditions. Results calculated are analyzed for different plasma parameters. Relations between major plasma parameters, such as density and temperature, are obtained and key physical processes in the neutral beam heating, including beam power deposition, trapped fraction, heating efficiency, and power loss, are simulated. Other physical processes, such as current-drive, toroidal rotation and neutron emission, are also discussed.