期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Recent progress of laboratory astrophysics with intense lasers 被引量:3
1
作者 Hideaki Takabe Yasuhiro Kuramitsu 《High Power Laser Science and Engineering》 SCIE CAS CSCD 2021年第4期7-40,共34页
Thanks to a rapid progress of high-power lasers since the birth of laser by T.H.Maiman in 1960,intense lasers have been developed mainly for studying the scientific feasibility of laser fusion.Inertial confinement fus... Thanks to a rapid progress of high-power lasers since the birth of laser by T.H.Maiman in 1960,intense lasers have been developed mainly for studying the scientific feasibility of laser fusion.Inertial confinement fusion with an intense laser has attracted attention as a new future energy source after two oil crises in the 1970s and 1980s.From the beginning,the most challenging physics is known to be the hydrodynamic instability to realize the spherical implosion to achieve more than 1000 times the solid density.Many studies have been performed theoretically and experimentally on the hydrodynamic instability and resultant turbulent mixing of compressible fluids.During such activities in the laboratory,the explosion of supernova SN1987A was observed in the sky on 23 February 1987.The X-ray satellites have revealed that the hydrodynamic instability is a key issue to understand the physics of supernova explosion.After collaboration between laser plasma researchers and astrophysicists,the laboratory astrophysics with intense lasers was proposed and promoted around the end of the 1990s.The original subject was mainly related to hydrodynamic instabilities.However,after two decades of laboratory astrophysics research,we can now find a diversity of research topics.It has been demonstrated theoretically and experimentally that a variety of nonlinear physics of collisionless plasmas can be studied in laser ablation plasmas in the last decade.In the present paper,we shed light on the recent 10 topics studied intensively in laboratory experiments.A brief review is given by citing recent papers.Then,modeling cosmic-ray acceleration with lasers is reviewed in a following session as a special topic to be the future main topic in laboratory astrophysics research. 展开更多
关键词 collisionless shock compressible hydrodynamics cosmic rays equation of state high-energy-density plasmas intense laser magnetic turbulence opacity experiment particle accelerations relativistic plasmas turbulent mixing wakefield acceleration Weibel instability
原文传递
A novel multi-shot target platform for laser-driven laboratory astrophysics experiments
2
作者 Pablo Perez-Martin Irene Prencipe +25 位作者 Manfred Sobiella Fabian Donat Ning Kang Zhiyu He Huiya Liu Lei Ren Zhiyong Xie Jun Xiong Yan Zhang Florian-Emanuel Brack MichalČervenák Pavel Gajdoš Lenka Hronová Kakolee Kaniz Michaela Kozlová Florian Kroll Xiayun Pan Gabriel Schaumann Sushil Singh MichalŠmíd Francisco Suzuki-Vidal Panzheng Zhang Jinren Sun Jianqiang Zhu Miroslav Krůs Katerina Falk 《High Power Laser Science and Engineering》 SCIE EI CAS CSCD 2023年第2期11-19,共9页
A new approach to target development for laboratory astrophysics experiments at high-power laser facilities is presented.With the dawn of high-power lasers,laboratory astrophysics has emerged as a field,bringing insig... A new approach to target development for laboratory astrophysics experiments at high-power laser facilities is presented.With the dawn of high-power lasers,laboratory astrophysics has emerged as a field,bringing insight into physical processes in astrophysical objects,such as the formation of stars.An important factor for success in these experiments is targetry.To date,targets have mainly relied on expensive and challenging microfabrication methods.The design presented incorporates replaceable machined parts that assemble into a structure that defines the experimental geometry.This can make targets cheaper and faster to manufacture,while maintaining robustness and reproducibility.The platform is intended for experiments on plasma flows,but it is flexible and may be adapted to the constraints of other experimental setups.Examples of targets used in experimental campaigns are shown,including a design for insertion in a high magnetic field coil.Experimental results are included,demonstrating the performance of the targets. 展开更多
关键词 high magnetic fields laboratory astrophysics laser-plasma interaction magnetized plasmas target design
原文传递
Targets for high repetition rate laser facilities:needs,challenges and perspectives 被引量:2
3
作者 I.Prencipe J.Fuchs +44 位作者 S.Pascarelli D.W.Schumacher R.B.Stephens N.B.Alexander R.Briggs M.Büscher M.O.Cernaianu A.Choukourov M.De Marco A.Erbe J.Fassbender G.Fiquet P.Fitzsimmons C.Gheorghiu J.Hund L.G.Huang M.Harmand N.J.Hartley A.Irman T.Kluge Z.Konopkova S.Kraft D.Kraus V.Leca D.Margarone J.Metzkes K.Nagai W.Nazarov P.Lutoslawski D.Papp M.Passoni A.Pelka J.P.Perin J.Schulz M.Smid C.Spindloe S.Steinke R.Torchio C.Vass T.Wiste R.Zaffino K.Zeil T.Tschentscher U.Schramm T.E.Cowan 《High Power Laser Science and Engineering》 SCIE CAS CSCD 2017年第3期10-40,共31页
A number of laser facilities coming online all over the world promise the capability of high-power laser experiments with shot repetition rates between 1 and 10 Hz. Target availability and technical issues related to ... A number of laser facilities coming online all over the world promise the capability of high-power laser experiments with shot repetition rates between 1 and 10 Hz. Target availability and technical issues related to the interaction environment could become a bottleneck for the exploitation of such facilities. In this paper, we report on target needs for three different classes of experiments: dynamic compression physics, electron transport and isochoric heating, and laser-driven particle and radiation sources. We also review some of the most challenging issues in target fabrication and high repetition rate operation. Finally, we discuss current target supply strategies and future perspectives to establish a sustainable target provision infrastructure for advanced laser facilities. 展开更多
关键词 high-energy density physics target design and fabrication
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部