Purpose–In response to the problem of insufficient traction/braking adhesion force caused by the existence of the third-body medium on the rail surface,this study aims to analyze the utilization of wheel-rail adhesio...Purpose–In response to the problem of insufficient traction/braking adhesion force caused by the existence of the third-body medium on the rail surface,this study aims to analyze the utilization of wheel-rail adhesion coefficient under different medium conditions and propose relevant measures for reasonable and optimized utilization of adhesion to ensure the traction/braking performance and operation safety of trains.Design/methodology/approach–Based on the PLS-160 wheel-rail adhesion simulation test rig,the study investigates the variation patterns of maximum utilized adhesion characteristics on the rail surface under different conditions of small creepage and large slip.Through statistical analysis of multiple sets of experimental data,the statistical distribution patterns of maximum utilized adhesion on the rail surface are obtained,and a method for analyzing wheel-rail adhesion redundancy based on normal distribution is proposed.The study analyzes the utilization of traction/braking adhesion,as well as adhesion redundancy,for different medium under small creepage and large slip conditions.Based on these findings,relevant measures for the reasonable and optimized utilization of adhesion are derived.Findings–When the third-body medium exists on the rail surface,the train should adopt the low-level service braking to avoid the braking skidding by extending the braking distance.Compared with the current adhesion control strategy of small creepage,adopting appropriate strategies to control the train’s adhesion coefficient near the second peak point of the adhesion coefficient-slip ratio curve in large slip can effectively improve the traction/braking adhesion redundancy and the upper limit of adhesion utilization,thereby ensuring the traction/braking performance and operation safety of the train.Originality/value–Most existing studies focus on the wheel-rail adhesion coefficient values and variation patterns under different medium conditions,without considering whether the rail surface with different medium can provide sufficient traction/braking utilized adhesion coefficient for the train.Therefore,there is a risk of traction overspeeding/braking skidding.This study analyzes whether the rail surface with different medium can provide sufficient traction/braking utilized adhesion coefficient for the train and whether there is redundancy.Based on these findings,relevant measures for the reasonable and optimized utilization of adhesion are derived to further ensure operation safety of the train.展开更多
The railway vehicle gearbox is an important part of the railway vehicle traction transmission system which ensures the smooth running of railway vehicles.However,as the running speed of railway vehicles continues to i...The railway vehicle gearbox is an important part of the railway vehicle traction transmission system which ensures the smooth running of railway vehicles.However,as the running speed of railway vehicles continues to increase,the railway vehicle gearbox is exposed to a more demanding operating environment.Under both internal and external excitations,the gearbox is prone to faults such as fatigue cracks,and broken teeth.It is crucial to detect these faults before they result in severe failures and accidents.Therefore,understanding the dynamics and fault diagnosis of railway vehicle gearbox is needed.At present,there is a lack of systematic review of railway vehicle gearbox dynamics and fault diagnosis.So,this paper systematically summarizes the research progress on railway vehicle gearbox dynamics and fault diagnosis.To this end,this paper first summarizes the latest research progress on the dynamics of railway vehicle gearboxes.The dynamics and vibration characteristics of the gearbox are summarized under internal and external excitations,as well as faulty conditions.Then,the stateof-the-art signal processing and artificial intelligence methods for fault diagnosis of railway vehicle gearboxes are reviewed.In the end,future research prospects are given.展开更多
To analyze wheel wear discrepancy between motor car and trailer of an intercity train,a novel wheel wear rates calculation model was proposed,which was composed of the intercity train dynamics model,wheel-rail three-d...To analyze wheel wear discrepancy between motor car and trailer of an intercity train,a novel wheel wear rates calculation model was proposed,which was composed of the intercity train dynamics model,wheel-rail three-dimensional rolling contact FEM model and the wear model.The simulated results were contrasted with measured results in field test.The simulated results showed the motor car wheels had larger rotation rate and longitudinal creepage than the trailer wheels.Meanwhile,the motor car wheels encountered larger vertical forces and longitudinal forces from bogie because of the heavier car body and the impact of traction torque.The traction torque acting on motor car wheel could increase the slip rates in the rear part of wheel contact patch and weaken the spinning phenomenon of relative slip.Larger contact pressure and slip rates caused the higher wear rates of motor car wheel than those of trailer wheel.The overall trends of wheel wear depth in simulated and tested results were similar.And they both showed the motor car wheel encountered the more serious wear than the trailer wheel.These models can be used to study the effect of the traction characteristics curves on the wear of wheel.展开更多
In order to study the safety and the comfort of high-speed trains running on a single-tower cable-stayed bridge under spatial gust,a dynamic model of wind-train-bridge analysis model is built based on the autoregressi...In order to study the safety and the comfort of high-speed trains running on a single-tower cable-stayed bridge under spatial gust,a dynamic model of wind-train-bridge analysis model is built based on the autoregressive method,the multi-body dynamics method and the finite element method.On this basis,the influence of spatial gust model loading,the suspension parameters change,wind attack angle and speed on the train-bridge system are analyzed by combining the time/frequency domain analysis and statistical methods.The results show that the spatial gust environment is one of the most important factors affecting safety and comfort and can make the calculation result tend to be conservative and more conducive.The response changes caused by K_(py),K_(px) and K_(sx) changes are nearly linear,while Ksy shows nonlinear characteristics and the most sensitivity.Wind attack angle at 75°and 90°has the greatest influence on the vehicle-bridge system.For ride comfort index,when pre-set wind speed(α=75°)reaches 20 m/s,the vertical acceleration firstly exceeds the limit value;when wind speed(α=90°)reaches 21.5 m/s,the lateral acceleration firstly exceeds the limit value,and the ride comfort of the vehicle cannot be guaranteed.For running safety index,when pre-set wind speed(α=75°)reaches 24.6 m/s,the wheel unloading coefficient firstly exceeds the limit;when pre-set wind speed(α=90°)reaches 24.5 m/s,the derailment coefficient firstly exceeds the limit,and the running safety cannot be guaranteed.The results can provide a suitable reference for the safe and stable operation of trains on the bridge.展开更多
In order to control the low frequency vibration of railway vehicles, a vertical two degrees of freedom(2DOF) low frequency dynamic vibration absorber(DVA) based on acceleration is proposed. Parameters of the dynamic v...In order to control the low frequency vibration of railway vehicles, a vertical two degrees of freedom(2DOF) low frequency dynamic vibration absorber(DVA) based on acceleration is proposed. Parameters of the dynamic vibration absorber are put forth to control the low frequency vibration of car body bouncing and pitching. Next, the acceleration power spectrum density(PSD)and ride quality of the car body are calculated based on the pseudo excitation method(PEM) and covariance algorithm,respectively. According to the requirement of 2DOF low frequency DVA, the isolators with high static low dynamic stiffness(HSLDS) are designed. A high-speed train dynamic model containing HSLDS isolators is established to validate the effects on the car body vibration. The results reveal that the 2D low frequency DVA can significantly reduce the vibration of the car body bouncing and pitching. Thus, the ride quality of the vehicle is increased, and passenger comfort is improved.展开更多
Noise generated by trains running on elevated lines creates many disturbances to the normal lives of surrounding residents. Investigations have shown that people living along elevated lines complain that the noise is ...Noise generated by trains running on elevated lines creates many disturbances to the normal lives of surrounding residents. Investigations have shown that people living along elevated lines complain that the noise is sometimes unbearable. To better control the noise and optimize the acoustic environment, noise spectrum characteristics were analyzed and compared with a field test and a numerical simulation. Through an energy analysis of the noise on the bridge side, the energy distribution characteristics of the noise at specific measuring points in different frequency bands were obtained. The influence of the Doppler effect on frequency shift was analyzed. Based on the partial coherence theory, a multi-input and single-output program was compiled to calculate the correlation and contribution degree of the bridge structure-borne noise and wheel/rail noise at the one-third octave center frequency. The results show that the peak noises of the bridge and the wheel/rail are concentrated at 31.5–63 Hz and 400–800 Hz, respectively. For environmental noise on the bridge side, the frequency band above 250 Hz is mainly affected by the wheel/rail noise. In areas of noise source strength, the relative ratio of noise energy above 250 Hz can reach 83.4%. Noise in the near ground and far bridge area is mainly low-frequency, and the relative energy ratio is about 8.9%. The Doppler effect has an influence of less than 6% on the frequency shift with a speed of 67.9 km/h. In the low-frequency band below 250 Hz, the noise in the acoustic shadow area near the bridge and the ground is mainly contributed to by the vibration-radiated noise of the bridge, of which the contribution of the bottom panel is the most prominent. The noise in the comprehensive noise area of the far bridge is mainly caused by the structure-borne noise of the bridge, and the contribution of each bridge panel is different. This study can provide a reference for finding the source of elevated rail noise in some challenging frequency ranges and for then determining optimal designs and measures for noise reduction.展开更多
An EMU train with detailed cabin structural is established based on the finite element method.The secondary impact between train driver and control desk is fully analysed and two measures are proposed to reduce the dr...An EMU train with detailed cabin structural is established based on the finite element method.The secondary impact between train driver and control desk is fully analysed and two measures are proposed to reduce the driver injury severity,such as the multi-objective optimization of the driver seat position and equipping the train with three-point seat belt.Simulation results indicate that the driver seat position has a significant effect on the driver injury severity during a secondary impact.According to the multi-objective optimization,some Pareto solutions are suggested to design the driver seat position.Besides that,it is also indicated although the chest and leg are well protected when the driver wears a two-point seat belt,it increases the head injure during a secondary impact.On the other hand,the three-point seat belt can supply the train driver with an overall protection against the secondary impact.The injury criteria(HIC,VC,TI)of the driver with the three-point seat belt is significantly lower than those of the driver without seat belt.Moreover,according to the simulation analysis,the limited load of the three-point seat belt is suggested about 1.5 kN.展开更多
High-speed maglev trains will play an important role in the high-speed transportation system in the near future.However,under the conditions of strong magnetic fields and continuous operation,the actuators of the high...High-speed maglev trains will play an important role in the high-speed transportation system in the near future.However,under the conditions of strong magnetic fields and continuous operation,the actuators of the high-speed maglev train suspension system are prone to lose partial effectiveness,which makes the suspension control problem challenging.In addition,most existing fault-tolerant control(FTC)methods for suspension systems require linearization around the equilibrium points during the controller design or stability analysis.Therefore,from a practical perspective,this study presents a novel nonlinear FTC strategy with adaptive compensation for high-speed maglev train suspension systems.First,a nonlinear dynamic model of the suspension system based on join-structure is established and the actuator failures are described.Then,a nonlinear fault-tolerant suspension control law with an adaptive update law is designed to achieve stable suspension against partial actuator failure.The Lyapunov theory and extended Barbalat lemma are utilized to rigorously prove the closed-loop asymptotic stability even if there is partial actuator failure,without any approximation to the original nonlinear dynamics.Finally,hardware experimental results are included to demonstrate the effectiveness of the proposed approach.展开更多
文摘Purpose–In response to the problem of insufficient traction/braking adhesion force caused by the existence of the third-body medium on the rail surface,this study aims to analyze the utilization of wheel-rail adhesion coefficient under different medium conditions and propose relevant measures for reasonable and optimized utilization of adhesion to ensure the traction/braking performance and operation safety of trains.Design/methodology/approach–Based on the PLS-160 wheel-rail adhesion simulation test rig,the study investigates the variation patterns of maximum utilized adhesion characteristics on the rail surface under different conditions of small creepage and large slip.Through statistical analysis of multiple sets of experimental data,the statistical distribution patterns of maximum utilized adhesion on the rail surface are obtained,and a method for analyzing wheel-rail adhesion redundancy based on normal distribution is proposed.The study analyzes the utilization of traction/braking adhesion,as well as adhesion redundancy,for different medium under small creepage and large slip conditions.Based on these findings,relevant measures for the reasonable and optimized utilization of adhesion are derived.Findings–When the third-body medium exists on the rail surface,the train should adopt the low-level service braking to avoid the braking skidding by extending the braking distance.Compared with the current adhesion control strategy of small creepage,adopting appropriate strategies to control the train’s adhesion coefficient near the second peak point of the adhesion coefficient-slip ratio curve in large slip can effectively improve the traction/braking adhesion redundancy and the upper limit of adhesion utilization,thereby ensuring the traction/braking performance and operation safety of the train.Originality/value–Most existing studies focus on the wheel-rail adhesion coefficient values and variation patterns under different medium conditions,without considering whether the rail surface with different medium can provide sufficient traction/braking utilized adhesion coefficient for the train.Therefore,there is a risk of traction overspeeding/braking skidding.This study analyzes whether the rail surface with different medium can provide sufficient traction/braking utilized adhesion coefficient for the train and whether there is redundancy.Based on these findings,relevant measures for the reasonable and optimized utilization of adhesion are derived to further ensure operation safety of the train.
基金sponsored by the National Natural Science Foundation of China(Grant#52375115)Shanghai Rising-Star Program(Grant#22YF1450500)Fundamental Research Funds for the Central Universities.Reviewers’and the editor’s efforts are also much appreciated.
文摘The railway vehicle gearbox is an important part of the railway vehicle traction transmission system which ensures the smooth running of railway vehicles.However,as the running speed of railway vehicles continues to increase,the railway vehicle gearbox is exposed to a more demanding operating environment.Under both internal and external excitations,the gearbox is prone to faults such as fatigue cracks,and broken teeth.It is crucial to detect these faults before they result in severe failures and accidents.Therefore,understanding the dynamics and fault diagnosis of railway vehicle gearbox is needed.At present,there is a lack of systematic review of railway vehicle gearbox dynamics and fault diagnosis.So,this paper systematically summarizes the research progress on railway vehicle gearbox dynamics and fault diagnosis.To this end,this paper first summarizes the latest research progress on the dynamics of railway vehicle gearboxes.The dynamics and vibration characteristics of the gearbox are summarized under internal and external excitations,as well as faulty conditions.Then,the stateof-the-art signal processing and artificial intelligence methods for fault diagnosis of railway vehicle gearboxes are reviewed.In the end,future research prospects are given.
基金Project(51805374)supported by the National Natural Science Foundation of ChinaProject(208YFB1201603-08)supported by the Key R&D Program of Ministry of Science and Technology,China。
文摘To analyze wheel wear discrepancy between motor car and trailer of an intercity train,a novel wheel wear rates calculation model was proposed,which was composed of the intercity train dynamics model,wheel-rail three-dimensional rolling contact FEM model and the wear model.The simulated results were contrasted with measured results in field test.The simulated results showed the motor car wheels had larger rotation rate and longitudinal creepage than the trailer wheels.Meanwhile,the motor car wheels encountered larger vertical forces and longitudinal forces from bogie because of the heavier car body and the impact of traction torque.The traction torque acting on motor car wheel could increase the slip rates in the rear part of wheel contact patch and weaken the spinning phenomenon of relative slip.Larger contact pressure and slip rates caused the higher wear rates of motor car wheel than those of trailer wheel.The overall trends of wheel wear depth in simulated and tested results were similar.And they both showed the motor car wheel encountered the more serious wear than the trailer wheel.These models can be used to study the effect of the traction characteristics curves on the wear of wheel.
基金Project(20ZR1460700) supported by the Natural Science Foundation of Shanghai,ChinaProject supported by Shanghai Collaborative Innovation Research Center for Multi-network&Multi-modal Rail Transit,China。
文摘In order to study the safety and the comfort of high-speed trains running on a single-tower cable-stayed bridge under spatial gust,a dynamic model of wind-train-bridge analysis model is built based on the autoregressive method,the multi-body dynamics method and the finite element method.On this basis,the influence of spatial gust model loading,the suspension parameters change,wind attack angle and speed on the train-bridge system are analyzed by combining the time/frequency domain analysis and statistical methods.The results show that the spatial gust environment is one of the most important factors affecting safety and comfort and can make the calculation result tend to be conservative and more conducive.The response changes caused by K_(py),K_(px) and K_(sx) changes are nearly linear,while Ksy shows nonlinear characteristics and the most sensitivity.Wind attack angle at 75°and 90°has the greatest influence on the vehicle-bridge system.For ride comfort index,when pre-set wind speed(α=75°)reaches 20 m/s,the vertical acceleration firstly exceeds the limit value;when wind speed(α=90°)reaches 21.5 m/s,the lateral acceleration firstly exceeds the limit value,and the ride comfort of the vehicle cannot be guaranteed.For running safety index,when pre-set wind speed(α=75°)reaches 24.6 m/s,the wheel unloading coefficient firstly exceeds the limit;when pre-set wind speed(α=90°)reaches 24.5 m/s,the derailment coefficient firstly exceeds the limit,and the running safety cannot be guaranteed.The results can provide a suitable reference for the safe and stable operation of trains on the bridge.
基金supported by the National Natural Science Foundation of China(Grant No.51805373)
文摘In order to control the low frequency vibration of railway vehicles, a vertical two degrees of freedom(2DOF) low frequency dynamic vibration absorber(DVA) based on acceleration is proposed. Parameters of the dynamic vibration absorber are put forth to control the low frequency vibration of car body bouncing and pitching. Next, the acceleration power spectrum density(PSD)and ride quality of the car body are calculated based on the pseudo excitation method(PEM) and covariance algorithm,respectively. According to the requirement of 2DOF low frequency DVA, the isolators with high static low dynamic stiffness(HSLDS) are designed. A high-speed train dynamic model containing HSLDS isolators is established to validate the effects on the car body vibration. The results reveal that the 2D low frequency DVA can significantly reduce the vibration of the car body bouncing and pitching. Thus, the ride quality of the vehicle is increased, and passenger comfort is improved.
基金Project supported by the National Natural Science Foundation of China (Nos. 5140843411772230and 51678446)。
文摘Noise generated by trains running on elevated lines creates many disturbances to the normal lives of surrounding residents. Investigations have shown that people living along elevated lines complain that the noise is sometimes unbearable. To better control the noise and optimize the acoustic environment, noise spectrum characteristics were analyzed and compared with a field test and a numerical simulation. Through an energy analysis of the noise on the bridge side, the energy distribution characteristics of the noise at specific measuring points in different frequency bands were obtained. The influence of the Doppler effect on frequency shift was analyzed. Based on the partial coherence theory, a multi-input and single-output program was compiled to calculate the correlation and contribution degree of the bridge structure-borne noise and wheel/rail noise at the one-third octave center frequency. The results show that the peak noises of the bridge and the wheel/rail are concentrated at 31.5–63 Hz and 400–800 Hz, respectively. For environmental noise on the bridge side, the frequency band above 250 Hz is mainly affected by the wheel/rail noise. In areas of noise source strength, the relative ratio of noise energy above 250 Hz can reach 83.4%. Noise in the near ground and far bridge area is mainly low-frequency, and the relative energy ratio is about 8.9%. The Doppler effect has an influence of less than 6% on the frequency shift with a speed of 67.9 km/h. In the low-frequency band below 250 Hz, the noise in the acoustic shadow area near the bridge and the ground is mainly contributed to by the vibration-radiated noise of the bridge, of which the contribution of the bottom panel is the most prominent. The noise in the comprehensive noise area of the far bridge is mainly caused by the structure-borne noise of the bridge, and the contribution of each bridge panel is different. This study can provide a reference for finding the source of elevated rail noise in some challenging frequency ranges and for then determining optimal designs and measures for noise reduction.
基金Project(51805374) supported by the National Natural Science Foundation of ChinaProject(22120180531) supported by the Fundamental Research Funds for the Central Universities,ChinaProject(16PJ1409500) supported by the Shanghai Pujiang Program,China
文摘An EMU train with detailed cabin structural is established based on the finite element method.The secondary impact between train driver and control desk is fully analysed and two measures are proposed to reduce the driver injury severity,such as the multi-objective optimization of the driver seat position and equipping the train with three-point seat belt.Simulation results indicate that the driver seat position has a significant effect on the driver injury severity during a secondary impact.According to the multi-objective optimization,some Pareto solutions are suggested to design the driver seat position.Besides that,it is also indicated although the chest and leg are well protected when the driver wears a two-point seat belt,it increases the head injure during a secondary impact.On the other hand,the three-point seat belt can supply the train driver with an overall protection against the secondary impact.The injury criteria(HIC,VC,TI)of the driver with the three-point seat belt is significantly lower than those of the driver without seat belt.Moreover,according to the simulation analysis,the limited load of the three-point seat belt is suggested about 1.5 kN.
基金supported by the National Natural Science Foundation of China(Nos.52272374 and 52072269)the Shanghai Soft Science Research Project(No.22692194800)the Fundamental Research Funds for the Central Universities,China.
文摘High-speed maglev trains will play an important role in the high-speed transportation system in the near future.However,under the conditions of strong magnetic fields and continuous operation,the actuators of the high-speed maglev train suspension system are prone to lose partial effectiveness,which makes the suspension control problem challenging.In addition,most existing fault-tolerant control(FTC)methods for suspension systems require linearization around the equilibrium points during the controller design or stability analysis.Therefore,from a practical perspective,this study presents a novel nonlinear FTC strategy with adaptive compensation for high-speed maglev train suspension systems.First,a nonlinear dynamic model of the suspension system based on join-structure is established and the actuator failures are described.Then,a nonlinear fault-tolerant suspension control law with an adaptive update law is designed to achieve stable suspension against partial actuator failure.The Lyapunov theory and extended Barbalat lemma are utilized to rigorously prove the closed-loop asymptotic stability even if there is partial actuator failure,without any approximation to the original nonlinear dynamics.Finally,hardware experimental results are included to demonstrate the effectiveness of the proposed approach.