期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Colonization of endophyte Acremonium sp. D212 in Panax notoginseng and rice mediated by auxin and jasmonic acid 被引量:4
1
作者 Li Han Xuan Zhou +24 位作者 Yiting Zhao Shusheng Zhu Lixia Wu Yunlu He Xiangrui Ping Xinqi Lu Wuying Huang Jie Qian Lina Zhang Xi Jiang Dan Zhu Chongyu Luo Saijie Li Qian Dong Qijing Fu Kaiyuan Deng Xin Wang Lei Wang Sheng Peng Jinsong Wu Weimin Li JiǐíFriml Youyong Zhu Xiahong He Yunlong Du 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2020年第9期1433-1451,共19页
Endophytic fungi can be beneficial to plant growth. However, the molecular mechanisms under-lying colonization of Acremonium spp. remain unclear. In this study, a novel endophytic Acremonium strain was isolated from t... Endophytic fungi can be beneficial to plant growth. However, the molecular mechanisms under-lying colonization of Acremonium spp. remain unclear. In this study, a novel endophytic Acremonium strain was isolated from the buds of Panax notoginseng and named Acremonium sp. D212. The Acremonium sp. D212 could colonize the roots of P. notoginseng, enhance the resistance of P. notoginseng to root rot disease, and promote root growth and saponin bio-synthesis in P. notoginseng. Acremonium sp. D212 could secrete indole-3-acetic acid (IAA) and jasmonic acid (JA), and inoculation with the fungus increased the endogenous levels of IAA and JA in P. noto-ginseng. Colonization of the Acremonium sp. D212 in the roots of the rice line Nipponbare was dependent on the concentration of methyl jasmonate (MeJA) (2–15μmol/L) and 1-naphthalenacetic acid (NAA) (10–20μmol/L). Moreover, the roots of the JA signaling-defective coi1-18 mutant were colonized by Acremonium sp. D212 to a lesser degree than those of the wild-type Nipponbare and miR393b-overexpressing lines, and the colonization was res-cued by MeJA but not by NAA. It suggests that the cross-talk between JA signaling and the auxin biosynthetic pathway plays a crucial role in the colonization of Acremonium sp. D212 in host plants. 展开更多
关键词 ROOTS ENDOGENOUS EXPRESSING
原文传递
Retromer Subunits VPS35A and VPS29 Mediate Prevacuolar Compartment (PVC) Function in Arabidopsis
2
作者 Tomasz Nodzynski Mugurel I. Ferarub +7 位作者 Sibylle Hirsch Riet De Rycke Claudiu Niculaes Wout Boerjan Jelle Van Leene Geert De Jaeger Steffen Vanneste Jiri Friml 《Molecular Plant》 SCIE CAS CSCD 2013年第6期1849-1862,共14页
Intracellular protein routing is mediated by vesicular transport which is tightly regulated in eukaryotes. The protein and lipid homeostasis depends on coordinated delivery of de novo synthesized or recycled cargoes t... Intracellular protein routing is mediated by vesicular transport which is tightly regulated in eukaryotes. The protein and lipid homeostasis depends on coordinated delivery of de novo synthesized or recycled cargoes to the plasma membrane by exocytosis and their subsequent removal by rerouting them for recycling or degradation. Here, we report the characterization of protein affected trafficking 3 (pat3) mutant that we identified by an epifluorescence-based for- ward genetic screen for mutants defective in subcellular distribution of Arabidopsis auxin transporter PIN1-GFR While pat3 displays largely normal plant morphology and development in nutrient-rich conditions, it shows strong ectopic intracellular accumulations of different plasma membrane cargoes in structures that resemble prevacuolar compart- ments (PVC) with an aberrant morphology. Genetic mapping revealed that pat3 is defective in vacuolar protein sorting 35A (VPS35A), a putative subunit of the retromer complex that mediates retrograde trafficking between the PVC and trans-Golgi network. Similarly, a mutant defective in another retromer subunit, vps29, shows comparable subcellular defects in PVC morphology and protein accumulation. Thus, our data provide evidence that the retromer components VPS35A and VPS29 are essential for normal PVC morphology and normal trafficking of plasma membrane proteins in plants. In addition, we show that, out of the three VPS35 retromer subunits present in Arabidopsis thaliana genome, the VPS35 homolog A plays a prevailing role in trafficking to the lyric vacuole, presenting another level of complexity in the retromer-dependent vacuolar sorting. 展开更多
关键词 RETROMER VPS35 VPS29 prevacuolar compartment (PVC) vacuolar trafficking Arabidopsis thaliana.
原文传递
Enquiry into the Topology of Plasma Membrane- Localized PIN Auxin Transport Components
3
作者 Tomasz Nodzynski Steffen Vanneste +3 位作者 Marta Zwiewka Marketa Pernisova Jan Hejatko Jiri Friml 《Molecular Plant》 SCIE CAS CSCD 2016年第11期1504-1519,共16页
Auxin directs plant ontogenesis via differential accumulation within tissues depending largely on the activity of PIN proteins that mediate auxin efflux from cells and its directional cell-to-cell transport. Regard- l... Auxin directs plant ontogenesis via differential accumulation within tissues depending largely on the activity of PIN proteins that mediate auxin efflux from cells and its directional cell-to-cell transport. Regard- less of the developmental importance of PINs, the structure of these transporters is poorly characterized. Here, we present experimental data concerning protein topology of plasma membrane-localized PINs. Utilizing approaches based on pH-dependent quenching of fluorescent reporters combined with immuno- localization techniques, we mapped the membrane topology of PINs and further cross-validated our results using available topology modeling software. We delineated the topology of PIN1 with two transmembrane (TM) bundles of five m-helices linked by a large intracellular loop and a C-terminus positioned outside the cytoplasm. Using constraints derived from our experimental data, we also provide an updated position of helical regions generating a verisimilitude model of PIN1. Since the canonical long PINs show a high degree of conservation in TM domains and auxin transport capacity has been demonstrated for Arabidopsis representatives of this group, this empirically enhanced topological model of PIN1 will be an important starting point for further studies on PIN structure-function relationships. In addition, we have established protocols that can be used to probe the topology of other plasma membrane proteins in plants. 展开更多
关键词 plasma membrane protein topology auxin efflux carriers Arabidopsis thaliana
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部