期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Preparation and Properties of Organically Modified Sepiolite/High-performance Epoxy Nanocomposites
1
作者 LU Hai-jun 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2006年第B12期41-46,共6页
Fibrous organic sepiolites (OSEP) and novel epoxy/OSEP nanocomposites were prepared, and different methods were investigated to produce an intercalated/exfoliated structure of OSEP. Experimental results show that th... Fibrous organic sepiolites (OSEP) and novel epoxy/OSEP nanocomposites were prepared, and different methods were investigated to produce an intercalated/exfoliated structure of OSEP. Experimental results show that the modifier molecules can be easily adsorbed by the sepiolite, but the layer space (d001 of the sepiolite, linked by means of covalent bond, remains unchanged. A proper method to solve this problem appears to exert large shearing force on the original sepiolite followed by its organic modification (OSEP2). The morphology observation shows that there are formed an even dispersion of nano-sized OSEP2 fibers in epoxy resin and a structure intercalated by epoxy molecules, which lead to significantly improved mechanical properties. Impact strength of the epoxy/OSEP2 nanocomposite increases from 32.1 kJ/m^2 to 44.4 kJ/m^2, 38.3% higher than that of pristine matrix with 3 wt% OSEP2 content. It is also noted that the flexural strength of the OSEP/epoxy composites has risen by about 3% higher than that of the pure epoxy resin. 展开更多
关键词 SEPIOLITE intercalation/exfoliation EPOXY NANOCOMPOSITES
下载PDF
Enhancing electrolyte ion diffusion via direct ink writing pillar array structure of graphene electrodes for high-performance microsupercapacitors
2
作者 Yan Zhang Huandi Zhang +7 位作者 Xiaoxiao Wang Cheng Tang Xiaowei Shi Zehua Zhao Jiamei Liu Guolong Wang Jianfeng Shen Lei Li 《Nano Research》 SCIE EI CSCD 2024年第7期6203-6211,共9页
The graphene-based microsupercapacitors(MSCs)suffer from graphene aggregation issue in electrodes.It reduces the electrolyte ions transportation in the electrodes to degrade the charge storage ability of MSCs,hamperin... The graphene-based microsupercapacitors(MSCs)suffer from graphene aggregation issue in electrodes.It reduces the electrolyte ions transportation in the electrodes to degrade the charge storage ability of MSCs,hampering their practical application.Increasing the electrolyte ions transportation in the electrodes can boost the charge storage ability of MSCs.Herein,we design and experimentally realize pillar array structure of graphene electrodes for MSCs by direct ink writing technology.The graphene electrodes with pillar array structure increase the contact area with electrolyte and short the electrolyte ions transport path,facilitating electrolyte ions transport in electrodes.The MSCs exhibit high areal capacitance of 25.67 mF·cm^(−2),high areal energy density of 20.54μWh·cm^(−2),and high power density of 1.45 mW·cm^(−2).One single MSCs can power timer for 10 min and pressure sensor more than 160 min,showing high practical application possibility.This work provides a new avenue for developing high performance MSCs. 展开更多
关键词 microsupercapacitors pillar array structure direct ink writing areal energy density ion transport
原文传递
Liquid metal-assisted hydrothermal preparation of cobalt disulfide on the polymer tape surface for flexible sensor
3
作者 Yudong Cao Haibin Zhong +3 位作者 Bin Chen Xianglong Lin Jianfeng Shen Mingxin Ye 《Nano Research》 SCIE EI CSCD 2023年第5期7575-7582,共8页
Nowadays,two-dimensional transition metal chalcogenides have become attractive materials for flexible wearable devices because of their intriguing chemistry characteristics and sensitivity to external stimuli.However,... Nowadays,two-dimensional transition metal chalcogenides have become attractive materials for flexible wearable devices because of their intriguing chemistry characteristics and sensitivity to external stimuli.However,the growth of two-dimensional materials on polymer surfaces is generally carried out by the time-consuming and costly chemical vapor deposition method.Reducing the manufacturing and integration costs while improving the device performance remains to be challenging.Herein,we report a simple liquid metal-assisted hydrothermal method for the growth of two-dimensional nanomaterials on the polymer surface.Specifically,a layer of liquid metal was coated on commercial tape,while layered cobalt sulfide was grown on its surface by a simple one-step hydrothermal method.Different kinds of flexible sensors can be prepared,such as bending sensor,pressure sensor,humidity sensor,which can be used to detect motion,writing,breathing,other signals.This strategy can also be assigned to sensing signals on different objects,which may further expand and enrich the application of twodimensional materials in sensing. 展开更多
关键词 liquid metal CoS_(2) flexible sensor HYDROTHERMAL
原文传递
CuS nanoplatelets arrays grown on graphene nanosheets as advanced electrode materials for supercapacitor applications 被引量:3
4
作者 Xianfu Li Kaixuan Zhou +2 位作者 Jianyu Zhou Jianfeng Shen Mingxin Ye 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2018年第12期2342-2349,共8页
CuS nanoplatelets arrays grown on graphene nanosheets are successfully synthesized via a facile lowtemperature solvothermal reaction with graphene oxide(GO), CH;CSNH;and Cu(CH;COO);·H;O as the reactants. CH;C... CuS nanoplatelets arrays grown on graphene nanosheets are successfully synthesized via a facile lowtemperature solvothermal reaction with graphene oxide(GO), CH;CSNH;and Cu(CH;COO);·H;O as the reactants. CH;CSNH;plays an important role in being the reducing agent for GO and the sulfur source of CuS. Supercapacitive performance of the graphene/CuS nanocomposite as active electrode materials has been evaluated by cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy measurements. The results indicate that graphene/CuS electrode delivers a high capacitance of 497.8 F g;at a current density of 0.2 A g;, which outperforms bare CuS electrode. This excellent performance is ascribed to the short diffusion path and large surface area of the unique hierarchical nanostructure with nanoflakes building blocks for bulk accessibility of faradaic reaction. 展开更多
关键词 Electrochemical capacitor Solvothermal method NANOSTRUCTURES COMPOSITES
原文传递
Highly Soluble Phenylethynyl-terminated Imide Oligomers and Thermosetting Polyimides Based on 2,2′3,3′-Biphenyltetracarboxylic Dianhydride 被引量:2
5
作者 MENG Xiangsheng LU Gewu +9 位作者 LIU Xiuju MENG Qingjie SHI Junwei YUAN Hang KE Hongjun WANG Xianwei FAN Weifeng LIU Jingfeng YAN Jingling WANG Zhen 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2019年第3期530-536,共7页
The properties of a series of imide oligomers were characterized according to their molecular weights, solubility, and thermal and rheological properties. This series of imide oligomers was synthesized via a two-step ... The properties of a series of imide oligomers were characterized according to their molecular weights, solubility, and thermal and rheological properties. This series of imide oligomers was synthesized via a two-step method using 2,2′,3,3′-biphenyltetracarboxylic dianhydride(3,3′-BPDA) and aromatic diamines as the monomers, and 4-phenylethynyl phtlialic anhydride(PEPA) as the end-capping agent. The imide oligomers based on 3,3′-BPDA showed excellent solubility in low boiling point solvents and low melt viscosity, which were attributed to their unique bent architectures. High-performance thermosetting polyimides were produced from these oligomers via thermal crosslinking of the phenylethynyl groups. The mechanical and thermal properties of the thermosets were studied using tensile testing, dynamic mechanical thermal analysis(DMTA), and thermogravimetric analysis(TGA). The 3,3′EPDA-based thermosets exhibited excellent thermal properties, with glass transition temperatures of up to 455℃, and 5% mass loss temperatures of up to 569℃ in air. The thermosets based on 3,3-BPDA showed superior thermal properties compared to those derived from TriA-X series oligomers. 展开更多
关键词 2 2′ 3 3′-Biphenyltetracarboxylic DIANHYDRIDE Phenylethynyl-terminated IMIDE oligomer Solubility Processability Thermosetting polyimide
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部