As one of the most effective techniques for finding software vulnerabilities,fuzzing has become a hot topic in software security.It feeds potentially syntactically or semantically malformed test data to a target progr...As one of the most effective techniques for finding software vulnerabilities,fuzzing has become a hot topic in software security.It feeds potentially syntactically or semantically malformed test data to a target program to mine vulnerabilities and crash the system.In recent years,considerable efforts have been dedicated by researchers and practitioners towards improving fuzzing,so there aremore and more methods and forms,whichmake it difficult to have a comprehensive understanding of the technique.This paper conducts a thorough survey of fuzzing,focusing on its general process,classification,common application scenarios,and some state-of-the-art techniques that have been introduced to improve its performance.Finally,this paper puts forward key research challenges and proposes possible future research directions that may provide new insights for researchers.展开更多
The stabilization properties of various typical complex dynamical networks composed of chaotic nodes are theoretically investigated and numerically simulated in detail. Some local stability properties of such pinned n...The stabilization properties of various typical complex dynamical networks composed of chaotic nodes are theoretically investigated and numerically simulated in detail. Some local stability properties of such pinned networks are derived and the valid stability regions are estimated based on eigenvalue analysis. Numerical simulations of such networks are given to explain why significantly less local controllers are needed by the specifically pinning scheme, which pins the most highly connected nodes in scale-free networks, than that required by the randomly pinning scheme. Also, it is explained why there is no significant difference between the two schemes for controlling random-graph networks and small-world networks.展开更多
Social robot accounts controlled by artificial intelligence or humans are active in social networks,bringing negative impacts to network security and social life.Existing social robot detection methods based on graph ...Social robot accounts controlled by artificial intelligence or humans are active in social networks,bringing negative impacts to network security and social life.Existing social robot detection methods based on graph neural networks suffer from the problem of many social network nodes and complex relationships,which makes it difficult to accurately describe the difference between the topological relations of nodes,resulting in low detection accuracy of social robots.This paper proposes a social robot detection method with the use of an improved neural network.First,social relationship subgraphs are constructed by leveraging the user’s social network to disentangle intricate social relationships effectively.Then,a linear modulated graph attention residual network model is devised to extract the node and network topology features of the social relation subgraph,thereby generating comprehensive social relation subgraph features,and the feature-wise linear modulation module of the model can better learn the differences between the nodes.Next,user text content and behavioral gene sequences are extracted to construct social behavioral features combined with the social relationship subgraph features.Finally,social robots can be more accurately identified by combining user behavioral and relationship features.By carrying out experimental studies based on the publicly available datasets TwiBot-20 and Cresci-15,the suggested method’s detection accuracies can achieve 86.73%and 97.86%,respectively.Compared with the existing mainstream approaches,the accuracy of the proposed method is 2.2%and 1.35%higher on the two datasets.The results show that the method proposed in this paper can effectively detect social robots and maintain a healthy ecological environment of social networks.展开更多
Mobile robots are often subject to multiplicative noise in the target tracking tasks,where the multiplicative measurement noise is correlated with additive measurement noise.In this paper,first,a correlation multiplic...Mobile robots are often subject to multiplicative noise in the target tracking tasks,where the multiplicative measurement noise is correlated with additive measurement noise.In this paper,first,a correlation multiplicative measurement noise model is established.It is able to more accurately represent the measurement error caused by the distance sensor dependence state.Then,the estimated performance mismatch problem of Cubature Kalman Filter(CKF)under multiplicative noise is analyzed.An improved Gaussian filter algorithm is introduced to help obtain the CKF algorithm with correlated multiplicative noise.In practice,the model parameters are unknown or inaccurate,especially the correlation of noise is difficult to obtain,which can lead to a decrease in filtering accuracy or even divergence.To address this,an adaptive CKF algorithm is further provided to achieve reliable state estimation for the unknown noise correlation coefficient and thus the application of the CKF algorithm is extended.Finally,the estimated performance is analyzed theoretically,and the simulation study is conducted to validate the effectiveness of the proposed algorithm.展开更多
The majority of the existing fault diagnosis methods using Dempster-Shafer(DS) evidence theory(DST) all provide the "static" fused results by combining several pieces of diagnosis evidence, which only reflec...The majority of the existing fault diagnosis methods using Dempster-Shafer(DS) evidence theory(DST) all provide the "static" fused results by combining several pieces of diagnosis evidence, which only reflect the current running status of monitored equipment. This paper presents the dynamic diagnosis strategy by using recursively the improved linear evidence updating rule. Its updated result can synthesize the diagnosis evidence collected at historical, current and future time steps by dynamically adjusting the proposed smoothing linear combination weights. The diagnosis examples of machine rotor show that the proposed method can provide more reliable and accurate results than the diagnosis methods based on the classical updating strategies.展开更多
基金supported in part by the National Natural Science Foundation of China under Grants 62273272,62303375,and 61873277in part by the Key Research and Development Program of Shaanxi Province under Grant 2023-YBGY-243+1 种基金in part by the Natural Science Foundation of Shaanxi Province under Grant 2020JQ-758in part by the Youth Innovation Team of Shaanxi Universities,and in part by the Special Fund for Scientific and Technological Innovation Strategy of Guangdong Province under Grant 2022A0505030025.
文摘As one of the most effective techniques for finding software vulnerabilities,fuzzing has become a hot topic in software security.It feeds potentially syntactically or semantically malformed test data to a target program to mine vulnerabilities and crash the system.In recent years,considerable efforts have been dedicated by researchers and practitioners towards improving fuzzing,so there aremore and more methods and forms,whichmake it difficult to have a comprehensive understanding of the technique.This paper conducts a thorough survey of fuzzing,focusing on its general process,classification,common application scenarios,and some state-of-the-art techniques that have been introduced to improve its performance.Finally,this paper puts forward key research challenges and proposes possible future research directions that may provide new insights for researchers.
基金the National Natural Science Foundation of China (No.60774088, 60504017)the Specialized Research Fund for theDoctoral Program of Higher Education of China (No.20050055013)the Program for New Century Excellent Talents of China (NCET)
文摘The stabilization properties of various typical complex dynamical networks composed of chaotic nodes are theoretically investigated and numerically simulated in detail. Some local stability properties of such pinned networks are derived and the valid stability regions are estimated based on eigenvalue analysis. Numerical simulations of such networks are given to explain why significantly less local controllers are needed by the specifically pinning scheme, which pins the most highly connected nodes in scale-free networks, than that required by the randomly pinning scheme. Also, it is explained why there is no significant difference between the two schemes for controlling random-graph networks and small-world networks.
基金This work was supported in part by the National Natural Science Foundation of China under Grants 62273272,62303375 and 61873277in part by the Key Research and Development Program of Shaanxi Province under Grant 2023-YBGY-243+2 种基金in part by the Natural Science Foundation of Shaanxi Province under Grants 2022JQ-606 and 2020-JQ758in part by the Research Plan of Department of Education of Shaanxi Province under Grant 21JK0752in part by the Youth Innovation Team of Shaanxi Universities.
文摘Social robot accounts controlled by artificial intelligence or humans are active in social networks,bringing negative impacts to network security and social life.Existing social robot detection methods based on graph neural networks suffer from the problem of many social network nodes and complex relationships,which makes it difficult to accurately describe the difference between the topological relations of nodes,resulting in low detection accuracy of social robots.This paper proposes a social robot detection method with the use of an improved neural network.First,social relationship subgraphs are constructed by leveraging the user’s social network to disentangle intricate social relationships effectively.Then,a linear modulated graph attention residual network model is devised to extract the node and network topology features of the social relation subgraph,thereby generating comprehensive social relation subgraph features,and the feature-wise linear modulation module of the model can better learn the differences between the nodes.Next,user text content and behavioral gene sequences are extracted to construct social behavioral features combined with the social relationship subgraph features.Finally,social robots can be more accurately identified by combining user behavioral and relationship features.By carrying out experimental studies based on the publicly available datasets TwiBot-20 and Cresci-15,the suggested method’s detection accuracies can achieve 86.73%and 97.86%,respectively.Compared with the existing mainstream approaches,the accuracy of the proposed method is 2.2%and 1.35%higher on the two datasets.The results show that the method proposed in this paper can effectively detect social robots and maintain a healthy ecological environment of social networks.
基金supported by the National Natural Science Foundation of China(Nos.61773147 and 62033010)Zhejiang Provincial Nature Science Foundation of China(Nos.LR17F030005 and LZ21F030004)Key-Area Research and Development Program of Guangdong Province,china(No.2018B010107002)。
文摘Mobile robots are often subject to multiplicative noise in the target tracking tasks,where the multiplicative measurement noise is correlated with additive measurement noise.In this paper,first,a correlation multiplicative measurement noise model is established.It is able to more accurately represent the measurement error caused by the distance sensor dependence state.Then,the estimated performance mismatch problem of Cubature Kalman Filter(CKF)under multiplicative noise is analyzed.An improved Gaussian filter algorithm is introduced to help obtain the CKF algorithm with correlated multiplicative noise.In practice,the model parameters are unknown or inaccurate,especially the correlation of noise is difficult to obtain,which can lead to a decrease in filtering accuracy or even divergence.To address this,an adaptive CKF algorithm is further provided to achieve reliable state estimation for the unknown noise correlation coefficient and thus the application of the CKF algorithm is extended.Finally,the estimated performance is analyzed theoretically,and the simulation study is conducted to validate the effectiveness of the proposed algorithm.
基金the National Natural Science Foundation of China(Nos.61374123,61104009,61174108,and 61433001)the Zhejiang Province Research Program Project of Commonweal Technology Application(No.2012C21025)the Program for Excellent Talents of Chongqing Higher School(No.2014-18)
文摘The majority of the existing fault diagnosis methods using Dempster-Shafer(DS) evidence theory(DST) all provide the "static" fused results by combining several pieces of diagnosis evidence, which only reflect the current running status of monitored equipment. This paper presents the dynamic diagnosis strategy by using recursively the improved linear evidence updating rule. Its updated result can synthesize the diagnosis evidence collected at historical, current and future time steps by dynamically adjusting the proposed smoothing linear combination weights. The diagnosis examples of machine rotor show that the proposed method can provide more reliable and accurate results than the diagnosis methods based on the classical updating strategies.