Cobalt-based electrocatalysts take advantage of potentially harmonizable microstructure and flexible coupling effects compared to commercial noble metal-based catalytic materials.However,conventional water electrolysi...Cobalt-based electrocatalysts take advantage of potentially harmonizable microstructure and flexible coupling effects compared to commercial noble metal-based catalytic materials.However,conventional water electrolysis systems based on cobalt-based monofunctional hydrogen evolution reaction(HER)or oxygen evolution reaction(OER)catalysts have certain shortcomings in terms of resource utilization and universality.In contrast,cobalt-based bifunctional catalysts(CBCs)have attracted much attention in recent years for overall water splitting systems because of their practicality and reduced preparation cost of electrolyzer.This review aims to address the latest development in CBCs for total hydrolysis.The main modification strategies of CBCs are systematically classified in water electrolysis to provide an overview of how to regulate their morphology and electronic configuration.Then,the catalytic performance of CBCs in total-hydrolysis is summarized according to the types of cobalt-based phosphides,sulfides and oxides,and the mechanism of strengthened electrocatalytic ability is emphasized through combining experiments and theoretical calculations.Future efforts are finally suggested to focus on exploring the dynamic conversion of reaction intermediates and building near-industrial CBCs,designing advanced CBC materials through micro-modulation,and addressing commercial applications.展开更多
Aging population is substantively increased over last decade and they have specific clothing needs especially for the elderly with disabilities. Their clothing needs to cover functional and aesthetic requirements in o...Aging population is substantively increased over last decade and they have specific clothing needs especially for the elderly with disabilities. Their clothing needs to cover functional and aesthetic requirements in order to improve their quality of life. Adaptive clothing is specially designed for the elderly and the disabled. However, there is no public policy to support such the elderly with disabilities in their clothing needs. In this paper, we aim to study the adaptive clothing and its significance, the problems encountered by the elderly with disabilities in adaptive clothing, analysis of public policy in Hong Kong for the elderly with disabilities in adaptive clothing over last decade, and implications and future directions for adaptive clothing in Hong Kong. In our findings, the demand of adaptive clothing in Hong Kong was substantially increased over last decade and the predicted demand will be twice of current demand after 50 years. However, the Government policy in Hong Kong has not yet fully supported their clothing needs, and the non-profit clothing services centre is set up to provide tailoring services to meet their needs. As the capacity of the centre is very limited, it is necessary to expand its capacity through assistive technology and to encourage non-government organizations (NGOs) to establish more social enterprises with Government’s support. Such findings would be beneficial to the Government for strengthening such services for the elderly and the disabled as well as public awareness.展开更多
Inspired by the sophisticated artificial leather garment industry and toward enhancing wearability of energy storage devices, we demonstrate a polyurethane artificial leather supercapacitor with large sheet electrodes...Inspired by the sophisticated artificial leather garment industry and toward enhancing wearability of energy storage devices, we demonstrate a polyurethane artificial leather supercapacitor with large sheet electrodes embedded in theleather layer simultaneously working as a polyelectrolyte. This design totally reserves textiles underneath and thus addresses the well-known challenge of wearing comfortability. It provides a revolutionary configuration of wearable supercapacitors: the artificial leather on garment is also a supercapacitor.Unlike the polyvinyl alcohol-based acidic electrolytes, which are widely used, sodium chloride is used to modify the intrinsically fluorescent polyurethane leather for ionic transportation, which has no harm to human. The fluorescent leather supercapacitor is easily transferrable from any arbitrary substrates to form various patterns, enabling multifunctionalities of practical wearability, fashion, and energy storage.展开更多
Owing to the merits of low cost,high safety and environmental benignity,rechargeable aqueous Zn-based batteries(ZBs)have gained tremendous attention in recent years.Nevertheless,the poor reversibility of Zn anodes tha...Owing to the merits of low cost,high safety and environmental benignity,rechargeable aqueous Zn-based batteries(ZBs)have gained tremendous attention in recent years.Nevertheless,the poor reversibility of Zn anodes that originates from dendrite growth,surface passivation and corrosion,severely hinders the further development of ZBs.To tackle these issues,here we report a Janus separator based on a Zn-ion conductive metal-organic framework(MOF)and reduced graphene oxide(rGO),which is able to regulate uniform Zn2+flux and electron conduction simultaneously during battery operation.Facilitated by the MOF/rGO bifunctional interlayers,the Zn anodes demonstrate stable plating/stripping behavior(over 500 h at 1 mA cm^(−2)),high Coulombic efficiency(99.2%at 2 mA cm^(−2) after 100 cycles)and reduced redox barrier.Moreover,it is also found that the Zn corrosion can be effectively retarded through diminishing the potential discrepancy on Zn surface.Such a separator engineering also saliently promotes the overall performance of Zn|MnO2 full cells,which deliver nearly 100%capacity retention after 2000 cycles at 4 A g^(−1) and high power density over 10 kW kg^(−1).This work provides a feasible route to the high-performance Zn anodes for ZBs.展开更多
In spite of ill-effects of high heel shoes, they are widely used for women. Hence, it is essential to understand the load transfer biomechanics in order to design better fit and comfortable shoes. In this study, both ...In spite of ill-effects of high heel shoes, they are widely used for women. Hence, it is essential to understand the load transfer biomechanics in order to design better fit and comfortable shoes. In this study, both experimental measurement and finite element analysis were used to evaluate the biomechanical effects of heel height on foot load transfer. A controlled experiment was conducted using custom-designed platforms. Under different weight-bearing conditions, peak plantar pressure, contact area and center of pressure were analyzed. A three-dimensional finite element foot model was used to simulate the high-heel support and to predict the internal stress distributions and deformations for different heel heights. Results from both experiment and model indicated that heel elevations had significant effects on all variables. When heel elevation increased, the center of pressure shifted from the midfoot region to the forefoot region, the contact area was reduced by 26% from 0 to 10.2 cm heel and the internal stress of foot bones increased. Prediction results also showed that the strain and total tension force of plantar fascia was minimum at 5.1 cm heel condition. This study helps to better understand the biomechanical behavior of foot, and to provide better suggestions for design parameters of high heeled shoes.展开更多
In recent years, supply chain management (SCM) has been in popularity as a new management philosophy for all industries, including textile and apparel industries. The textile-apparel supply chain is relatively compl...In recent years, supply chain management (SCM) has been in popularity as a new management philosophy for all industries, including textile and apparel industries. The textile-apparel supply chain is relatively complex because it encompasses many participants such as yarn manufacturers, fabric manufacturers, garment manufacturers and retailers. Although many scholars are engaged in researching SCM in textile and apparel industries, a systematic classification of textile-apparel chain does not exist. The paper proposes three types of textile-apparel chain, nominated vertical integration chain, traditional sourcing chain and 3P-hub (third party as the hub) chain. Different coordinators exist in different types of chain. Three Hong Kong headquartered companies, Esquel Group, TAL Apparel Ltd., and Li & Fang (Trading) Ltd. are used as cases responding to each type of the structures respectively.展开更多
Due to different cultural and historical background, the technology in Western and Eastern pattern design is inherently different. Along with the development of technology, garment pattern design technique is making p...Due to different cultural and historical background, the technology in Western and Eastern pattern design is inherently different. Along with the development of technology, garment pattern design technique is making progress towards high effectiveness and accuracy. Many researchers proposed different alternative methodologies to improve the current pattern making processes. This article examines the development of Western and Eastern garment pattern design technique. The main objective of this article is to provide a thorough review and hence a better understanding to those researchers who made contribution on developing pattern design technique and continue their work in the future.展开更多
Digital woven textiles are one of the latest research areas of digital textiles. The key of research on design of digital woven fabrics lies in structural design. Nowadays, the application of digital design technology...Digital woven textiles are one of the latest research areas of digital textiles. The key of research on design of digital woven fabrics lies in structural design. Nowadays, the application of digital design technology has fundamentally changed the concept of structural design of woven fabric, giving rise to design methods and effects that were deemed impossible before. A study has been carried out to analyze the nature of woven structures and the methods of structural design. This paper proposes an innovative principle and method of structural design under digital design concept, on which the design of digital gamut weaves and establishment of weave-database were presented to meet the requirement of balanced interlacement. It is envisaged that the results of this study will enhance future research in creation of digital woven fabrics, with particular emphasis on digital jacquard fabrics. Meanwhile, this study is also laid the foundation for the intelligent design of woven textile.展开更多
A web camera based multi-camera convergent close-range photogrammetric system is developed to obtain the neonates' head and facial morphology. The data will then be used to develop a secure and good-fitting eye-patch...A web camera based multi-camera convergent close-range photogrammetric system is developed to obtain the neonates' head and facial morphology. The data will then be used to develop a secure and good-fitting eye-patch protector for neonates, particularly whoa they are exposed to bright lights such as phototherapy light. Measurements obtained by the system are evaluated and validated against data obtained from optical scanning. Results show that the photogrammetric system meets the requirements of measuring accuracy and safety for neonate in the neonatal units.展开更多
Pattern design and technology play a very important role in the garment industry. In order to improve the level of pattern making and design of the garment industry, a survey was conducted to investigate the industria...Pattern design and technology play a very important role in the garment industry. In order to improve the level of pattern making and design of the garment industry, a survey was conducted to investigate the industrial needs in pattern design and technology in China's Mainland. The data were collected from the employers and employees from the garment industry and students in the major of fashion and clothing studies. It indicated that there was a gap between the employer and employee, especially the requirements of the industrial needs and the course contents covered by the tertiary schools. The employers expected to recruit more experienced pattern designers, at the same time, they were not reluctant to hire fresh graduates and spent more resources on the training of employees. The students knew little about their employment situation of the garment industry, spent too little time on the course study and learned too little practical skills in pattern design. They could not make use of the knowledge which prevented them from being employed by the garment industry. Efforts should be taken by both the tertiary schools and the garment industry. The students should be aspirated towards the profession of pattern cutters and the syllabuses of pattern making should be more practical and industrial orientated. The solution might benefit the garment industry a lot in a long run.展开更多
Electronic skins can monitor minute physiological signal variations in the human skins and represent the body’s state,showing an emerging trend for alternative medical diagnostics and human-machine interfaces.In this...Electronic skins can monitor minute physiological signal variations in the human skins and represent the body’s state,showing an emerging trend for alternative medical diagnostics and human-machine interfaces.In this study,we designed a bioinspired directional moisture-wicking electronic skin(DMWES)based on the construction of heterogeneous fibrous membranes and the conductive MXene/CNTs electrospraying layer.Unidirectional moisture transfer was successfully realized by surface energy gradient and push-pull effect via the design of distinct hydrophobic-hydrophilic difference,which can spontaneously absorb sweat from the skin.The DMWES membrane showed excellent comprehensive pressure sensing performance,high sensitivity(maximum sensitivity of 548.09 kPa^(−1)),wide linear range,rapid response and recovery time.In addition,the single-electrode triboelectric nanogenerator based on the DMWES can deliver a high areal power density of 21.6μW m^(−2) and good cycling stability in high pressure energy harvesting.Moreover,the superior pressure sensing and triboelectric performance enabled the DMWES for all-range healthcare sensing,including accurate pulse monitoring,voice recognition,and gait recognition.This work will help to boost the development of the next-generation breathable electronic skins in the applications of AI,human-machine interaction,and soft robots.展开更多
This study aims to evaluate the efficacy of different types of socks for patients with diabetes on reducing in-shoe plantar foot pressure when standing and walking. A total of 5 types of socks,including 3 types of dia...This study aims to evaluate the efficacy of different types of socks for patients with diabetes on reducing in-shoe plantar foot pressure when standing and walking. A total of 5 types of socks,including 3 types of diabetic socks and 2 types of daily /sports socks of various structures are studied. The effects of sock fabrication and design on plantar pressure redistribution that resulting in increasing the underfoot contact area and reducing the risk of pressure ulceration,as well as foot skin temperature and humidity, are examined. The results reveal that regardless of the different knitting structure,thickness and airspace ratio of the sock,both diabetic and daily /sports socks can effectively reduce high plantar pressure on the rear foot,and re-distribute the pressure to other foot regions,like the metatarsal heads. The effects of fabrication and knitting structure on pressure reduction and redistribution are not apparent in this study. However,they have a major impact on the control of foot skin temperature and humidity. The results of the study provide a reference for optimizing the design and functional performance of socks for patients with diabetes.展开更多
Wearable and stretchable strain sensors have potential values in the fields of human motion and health monitoring,flexible electronics,and soft robotic skin.The wearable and stretchable strain sensors can be directly ...Wearable and stretchable strain sensors have potential values in the fields of human motion and health monitoring,flexible electronics,and soft robotic skin.The wearable and stretchable strain sensors can be directly attached to human skin,providing visualized detection for human motions and personal healthcare.Conductive polymer composites(CPC)composed of conductive fillers and flexible polymers have the advantages of high stretchability,good flexibility,superior durability,which can be used to prepare flexible strain sensors with large working strain and outstanding sensitivity.This review has put forward a comprehensive summary on the fabrication methods,advanced mechanisms and strain sensing abilities of CPC strain sensors reported in recent years,especially the sensors with superior performance.Finally,the structural design,bionic function,integration technology and further application of CPC strain sensors are prospected.展开更多
SMPU (shape memory polyurethane) non-ionomers and ionomers, synthesized with poly(c-caprolactone) (PCL), 4, 4'-diphenylmethane diisocyanate (MDI), 1,4-butanediol (BDO), dimethylolpropionic acid (DMPA) wer...SMPU (shape memory polyurethane) non-ionomers and ionomers, synthesized with poly(c-caprolactone) (PCL), 4, 4'-diphenylmethane diisocyanate (MDI), 1,4-butanediol (BDO), dimethylolpropionic acid (DMPA) were measured with cyclic tensile test and strain recovery test. The relations between the structure and shape memory effect of these two series were studied with respect to the ionic group content and the effect of neutralization. The resulting data indicate that, with the introduction of asymmetrical extender, the stress at 100% elongation is decreased for PU non-ionomer and ionomer series, especially lowered sharply for non-ionomer series; the fixation ratio of ionomer series is not affected obviously by the ionic group content; the total recovery ratio of ionomer series is decreased greatly. After sufficient relaxation time for samples stretched beforehand, the switching temperature is raised slightly, whereas the recovery ratio measured with strain recovery test method is lowered with increased DMPA content. The characterization with FT-IR, DSC, DMA elucidated that, the ordered hard domain of the two series is disrupted with the introduction of DMPA which causes more hard segments to dissolve in soft phase; ionic groups on hard segment enhance the cohesion between hard segments especially at high ionic group content and significantly facilitate the phase separation compared with the corresponding non-ionomer at moderate ionic group content.展开更多
Wearable supercapacitors(SCs)are gaining prominence as portable energy storage devices.To develop high-performance wearable SCs,the significant relationship among material,structure,and performance inspired us with a ...Wearable supercapacitors(SCs)are gaining prominence as portable energy storage devices.To develop high-performance wearable SCs,the significant relationship among material,structure,and performance inspired us with a delicate design of the highly wearable embroidered supercapacitors made from the conductive fibers composited.By rendering the conductive interdigitally patterned embroidery as both the current collector and skeleton for the SCs,the novel pseudocapacitive material cobalt phosphides were then successfully electrodeposited,forming the first flexible and wearable in-plane embroidery SCs.The electrochemical measurements manifested that the highest specific capacitance was nearly 156.6 mF cm?2(65.72 F g?1)at the current density of 0.6 mA cm?2(0.25 A g?1),with a high energy density of 0.013 mWh cm?2(5.55 Wh kg?1)at a power density of 0.24 mW cm?2(100 W kg?1).As a demonstration,a monogrammed pattern was ingeniously designed and embroidered on the laboratory gown as the wearable in-plane SCs,which showed both decent electrochemical performance and excellent flexibility.展开更多
A low-threshold random laser with one mirror and feedback is investigated in the PMMA film containing rhodamine 590 and TiO2 nano-particles. Incoherent and coherent laser emission is observed. Effect of particle conce...A low-threshold random laser with one mirror and feedback is investigated in the PMMA film containing rhodamine 590 and TiO2 nano-particles. Incoherent and coherent laser emission is observed. Effect of particle concentration on light emission is explored, and the optimum particle concentration is obtained. Optical microscopy and scanning probe microscopy are used to investigate the film structure, and the principle of incoherent and coherent laser is analysed.展开更多
Digital jacquard fabric has its design concept and method directly borrowed from computer images and color modes, which enabled creation of jacquard fabric design that is far beyond what freehand patterns can express....Digital jacquard fabric has its design concept and method directly borrowed from computer images and color modes, which enabled creation of jacquard fabric design that is far beyond what freehand patterns can express. In this paper, the principles of digital jacquard fabric design were classified into two parts, colorless mode and colorful mode, and an innovative layered combination design method has been suggested contenting with this new design concept, by which digital jacquard fabric can be designed from colorless single-layer structure to colorful compound structure. As a result, designed colorless and colorful jacquard fabrics are capable of expressing picturesque and photo-realistic effects with a mega level color number on face of fabric. It is envisaged that the results of the study are of tremendous benefit to the creation of new jacquard fabric with an inimitable digital effect and this creation pose no problem in mass production.展开更多
The developments of Internet and e-commerce provide a new market place to businessman to sell their products and allow people to buy products via Internet as well as to create a new shopping media to consumers. The st...The developments of Internet and e-commerce provide a new market place to businessman to sell their products and allow people to buy products via Internet as well as to create a new shopping media to consumers. The study aims to investigate the factors affecting consumers' purchase decision via Internet and how product characteristics affect cyber shopping in Hong Kong. The study has revealed that the security of personal data,delivery time, product brand and price were the major concerns for developing cyber market. For marketing apparel products, brand loyalty becomes very important since consumers' judging confidence on the products can be increased in terms of fitting standards and quality aspects.展开更多
In this paper, the pinning synchronization problem of stochastic delayed complex network (SDCN) is investigated by using a novel hybrid pinning controller. The proposed hybrid pinning controller is composed of adapt...In this paper, the pinning synchronization problem of stochastic delayed complex network (SDCN) is investigated by using a novel hybrid pinning controller. The proposed hybrid pinning controller is composed of adaptive controller and impulsive controller, where the two controllers are both added to a fraction of nodes in the network. Using the Lyapunov stability theory and the novel hybrid pinning controller, some sufficient conditions are derived for the exponential synchronization of such dynamical networks in mean square. Two numerical simulation examples are provided to verify the effectiveness of the proposed approach. The simulation results show that the proposed control scheme has a fast convergence rate compared with the conventional adaptive pinning method.展开更多
A novel analytical model to determine the heat flux of subcooled pool boiling in fractal nanofluids is developed. The model considers the fractal character of nanofluids in terms of the fractal dimension of nanopartic...A novel analytical model to determine the heat flux of subcooled pool boiling in fractal nanofluids is developed. The model considers the fractal character of nanofluids in terms of the fractal dimension of nanoparticles and the fractal dimen- sion of active cavities on the heated surfaces; it also takes into account the effect of the Brownian motion of nanoparticles, which has no empirical constant but has parameters with physical meanings. The proposed model is expressed as a function of the subcooling of fluids and the wall superheat. The fractal analytical model is verified by a reasonable agreement with the experimental data and the results obtained from existing models.展开更多
基金financially supported by the National Natural Science Foundation of China(51572166,52102070)the Program for Professor of Special Appointment at Shanghai Institutions of Higher Learning(GZ2020012)+4 种基金the Key Research Project of Zhejiang Laboratory(2021PE0AC02)the China Postdoctoral Science Foundation(2021M702073)BAJC R&D Fund Projects(BA23011)Australian Research Council Future Fellowships(FT230100436)the Shanghai Technical Service Center for Advanced Ceramics Structure Design and Precision Manufacturing(20DZ2294000)。
文摘Cobalt-based electrocatalysts take advantage of potentially harmonizable microstructure and flexible coupling effects compared to commercial noble metal-based catalytic materials.However,conventional water electrolysis systems based on cobalt-based monofunctional hydrogen evolution reaction(HER)or oxygen evolution reaction(OER)catalysts have certain shortcomings in terms of resource utilization and universality.In contrast,cobalt-based bifunctional catalysts(CBCs)have attracted much attention in recent years for overall water splitting systems because of their practicality and reduced preparation cost of electrolyzer.This review aims to address the latest development in CBCs for total hydrolysis.The main modification strategies of CBCs are systematically classified in water electrolysis to provide an overview of how to regulate their morphology and electronic configuration.Then,the catalytic performance of CBCs in total-hydrolysis is summarized according to the types of cobalt-based phosphides,sulfides and oxides,and the mechanism of strengthened electrocatalytic ability is emphasized through combining experiments and theoretical calculations.Future efforts are finally suggested to focus on exploring the dynamic conversion of reaction intermediates and building near-industrial CBCs,designing advanced CBC materials through micro-modulation,and addressing commercial applications.
文摘Aging population is substantively increased over last decade and they have specific clothing needs especially for the elderly with disabilities. Their clothing needs to cover functional and aesthetic requirements in order to improve their quality of life. Adaptive clothing is specially designed for the elderly and the disabled. However, there is no public policy to support such the elderly with disabilities in their clothing needs. In this paper, we aim to study the adaptive clothing and its significance, the problems encountered by the elderly with disabilities in adaptive clothing, analysis of public policy in Hong Kong for the elderly with disabilities in adaptive clothing over last decade, and implications and future directions for adaptive clothing in Hong Kong. In our findings, the demand of adaptive clothing in Hong Kong was substantially increased over last decade and the predicted demand will be twice of current demand after 50 years. However, the Government policy in Hong Kong has not yet fully supported their clothing needs, and the non-profit clothing services centre is set up to provide tailoring services to meet their needs. As the capacity of the centre is very limited, it is necessary to expand its capacity through assistive technology and to encourage non-government organizations (NGOs) to establish more social enterprises with Government’s support. Such findings would be beneficial to the Government for strengthening such services for the elderly and the disabled as well as public awareness.
基金Funding of Harbin Institute of Technology (Shenzhen) (DD45001015)NSFC/RGC Joint Research Scheme (Project N_City U123/15)+2 种基金the Science Technology and Innovation Committee of Shenzhen Municipality (JCYJ20130401145617276 and R-IND4903)City University of Hong Kong (PJ7004645)the Hong Kong Polytechnic University (1-BBA3) supported this work
文摘Inspired by the sophisticated artificial leather garment industry and toward enhancing wearability of energy storage devices, we demonstrate a polyurethane artificial leather supercapacitor with large sheet electrodes embedded in theleather layer simultaneously working as a polyelectrolyte. This design totally reserves textiles underneath and thus addresses the well-known challenge of wearing comfortability. It provides a revolutionary configuration of wearable supercapacitors: the artificial leather on garment is also a supercapacitor.Unlike the polyvinyl alcohol-based acidic electrolytes, which are widely used, sodium chloride is used to modify the intrinsically fluorescent polyurethane leather for ionic transportation, which has no harm to human. The fluorescent leather supercapacitor is easily transferrable from any arbitrary substrates to form various patterns, enabling multifunctionalities of practical wearability, fashion, and energy storage.
基金This work was financially supported by Hong Kong Innovation&Technology Fund(ITS/031/18)National Key R&D Program of China(2016YFB0700600)+1 种基金Soft Science Research Project of Guangdong Province(2017B030301013)Shenzhen Science and Technology Research Grant(ZDSYS201707281026184).
文摘Owing to the merits of low cost,high safety and environmental benignity,rechargeable aqueous Zn-based batteries(ZBs)have gained tremendous attention in recent years.Nevertheless,the poor reversibility of Zn anodes that originates from dendrite growth,surface passivation and corrosion,severely hinders the further development of ZBs.To tackle these issues,here we report a Janus separator based on a Zn-ion conductive metal-organic framework(MOF)and reduced graphene oxide(rGO),which is able to regulate uniform Zn2+flux and electron conduction simultaneously during battery operation.Facilitated by the MOF/rGO bifunctional interlayers,the Zn anodes demonstrate stable plating/stripping behavior(over 500 h at 1 mA cm^(−2)),high Coulombic efficiency(99.2%at 2 mA cm^(−2) after 100 cycles)and reduced redox barrier.Moreover,it is also found that the Zn corrosion can be effectively retarded through diminishing the potential discrepancy on Zn surface.Such a separator engineering also saliently promotes the overall performance of Zn|MnO2 full cells,which deliver nearly 100%capacity retention after 2000 cycles at 4 A g^(−1) and high power density over 10 kW kg^(−1).This work provides a feasible route to the high-performance Zn anodes for ZBs.
基金supported by the Research Grant Council of Hong Kong (PolyU5317/05E, PolyU5331/07E, PolyU5352/08E)
文摘In spite of ill-effects of high heel shoes, they are widely used for women. Hence, it is essential to understand the load transfer biomechanics in order to design better fit and comfortable shoes. In this study, both experimental measurement and finite element analysis were used to evaluate the biomechanical effects of heel height on foot load transfer. A controlled experiment was conducted using custom-designed platforms. Under different weight-bearing conditions, peak plantar pressure, contact area and center of pressure were analyzed. A three-dimensional finite element foot model was used to simulate the high-heel support and to predict the internal stress distributions and deformations for different heel heights. Results from both experiment and model indicated that heel elevations had significant effects on all variables. When heel elevation increased, the center of pressure shifted from the midfoot region to the forefoot region, the contact area was reduced by 26% from 0 to 10.2 cm heel and the internal stress of foot bones increased. Prediction results also showed that the strain and total tension force of plantar fascia was minimum at 5.1 cm heel condition. This study helps to better understand the biomechanical behavior of foot, and to provide better suggestions for design parameters of high heeled shoes.
文摘In recent years, supply chain management (SCM) has been in popularity as a new management philosophy for all industries, including textile and apparel industries. The textile-apparel supply chain is relatively complex because it encompasses many participants such as yarn manufacturers, fabric manufacturers, garment manufacturers and retailers. Although many scholars are engaged in researching SCM in textile and apparel industries, a systematic classification of textile-apparel chain does not exist. The paper proposes three types of textile-apparel chain, nominated vertical integration chain, traditional sourcing chain and 3P-hub (third party as the hub) chain. Different coordinators exist in different types of chain. Three Hong Kong headquartered companies, Esquel Group, TAL Apparel Ltd., and Li & Fang (Trading) Ltd. are used as cases responding to each type of the structures respectively.
基金This Research is Supported by the Tuition Scholarship from The Hong Kong Polytechnic University
文摘Due to different cultural and historical background, the technology in Western and Eastern pattern design is inherently different. Along with the development of technology, garment pattern design technique is making progress towards high effectiveness and accuracy. Many researchers proposed different alternative methodologies to improve the current pattern making processes. This article examines the development of Western and Eastern garment pattern design technique. The main objective of this article is to provide a thorough review and hence a better understanding to those researchers who made contribution on developing pattern design technique and continue their work in the future.
基金Supported by project of Key Laboratory of Advanced Textile Materials and Manufacturing Technology (Zhejiang Sci-tech University) ,Ministry of Education (No.2006KF07)
文摘Digital woven textiles are one of the latest research areas of digital textiles. The key of research on design of digital woven fabrics lies in structural design. Nowadays, the application of digital design technology has fundamentally changed the concept of structural design of woven fabric, giving rise to design methods and effects that were deemed impossible before. A study has been carried out to analyze the nature of woven structures and the methods of structural design. This paper proposes an innovative principle and method of structural design under digital design concept, on which the design of digital gamut weaves and establishment of weave-database were presented to meet the requirement of balanced interlacement. It is envisaged that the results of this study will enhance future research in creation of digital woven fabrics, with particular emphasis on digital jacquard fabrics. Meanwhile, this study is also laid the foundation for the intelligent design of woven textile.
基金Earmarked Research Grant (Hong Kong)(No.POLYU 5299/04E)
文摘A web camera based multi-camera convergent close-range photogrammetric system is developed to obtain the neonates' head and facial morphology. The data will then be used to develop a secure and good-fitting eye-patch protector for neonates, particularly whoa they are exposed to bright lights such as phototherapy light. Measurements obtained by the system are evaluated and validated against data obtained from optical scanning. Results show that the photogrammetric system meets the requirements of measuring accuracy and safety for neonate in the neonatal units.
文摘Pattern design and technology play a very important role in the garment industry. In order to improve the level of pattern making and design of the garment industry, a survey was conducted to investigate the industrial needs in pattern design and technology in China's Mainland. The data were collected from the employers and employees from the garment industry and students in the major of fashion and clothing studies. It indicated that there was a gap between the employer and employee, especially the requirements of the industrial needs and the course contents covered by the tertiary schools. The employers expected to recruit more experienced pattern designers, at the same time, they were not reluctant to hire fresh graduates and spent more resources on the training of employees. The students knew little about their employment situation of the garment industry, spent too little time on the course study and learned too little practical skills in pattern design. They could not make use of the knowledge which prevented them from being employed by the garment industry. Efforts should be taken by both the tertiary schools and the garment industry. The students should be aspirated towards the profession of pattern cutters and the syllabuses of pattern making should be more practical and industrial orientated. The solution might benefit the garment industry a lot in a long run.
基金support from the Contract Research(“Development of Breathable Fabrics with Nano-Electrospun Membrane,”CityU ref.:9231419)the National Natural Science Foundation of China(“Study of Multi-Responsive Shape Memory Polyurethane Nanocomposites Inspired by Natural Fibers,”Grant No.51673162)+1 种基金Startup Grant of CityU(“Laboratory of Wearable Materials for Healthcare,”Grant No.9380116)National Natural Science Foundation of China,Grant No.52073241.
文摘Electronic skins can monitor minute physiological signal variations in the human skins and represent the body’s state,showing an emerging trend for alternative medical diagnostics and human-machine interfaces.In this study,we designed a bioinspired directional moisture-wicking electronic skin(DMWES)based on the construction of heterogeneous fibrous membranes and the conductive MXene/CNTs electrospraying layer.Unidirectional moisture transfer was successfully realized by surface energy gradient and push-pull effect via the design of distinct hydrophobic-hydrophilic difference,which can spontaneously absorb sweat from the skin.The DMWES membrane showed excellent comprehensive pressure sensing performance,high sensitivity(maximum sensitivity of 548.09 kPa^(−1)),wide linear range,rapid response and recovery time.In addition,the single-electrode triboelectric nanogenerator based on the DMWES can deliver a high areal power density of 21.6μW m^(−2) and good cycling stability in high pressure energy harvesting.Moreover,the superior pressure sensing and triboelectric performance enabled the DMWES for all-range healthcare sensing,including accurate pulse monitoring,voice recognition,and gait recognition.This work will help to boost the development of the next-generation breathable electronic skins in the applications of AI,human-machine interaction,and soft robots.
基金Research Grant Council,Hong Kong,China(No.PolyU 5308/11E)Departmental Grant of Institute of Textiles and Clothing,The Hong Kong Polytechnic University,Hong Kong,China(No.PolyU RTD6)
文摘This study aims to evaluate the efficacy of different types of socks for patients with diabetes on reducing in-shoe plantar foot pressure when standing and walking. A total of 5 types of socks,including 3 types of diabetic socks and 2 types of daily /sports socks of various structures are studied. The effects of sock fabrication and design on plantar pressure redistribution that resulting in increasing the underfoot contact area and reducing the risk of pressure ulceration,as well as foot skin temperature and humidity, are examined. The results reveal that regardless of the different knitting structure,thickness and airspace ratio of the sock,both diabetic and daily /sports socks can effectively reduce high plantar pressure on the rear foot,and re-distribute the pressure to other foot regions,like the metatarsal heads. The effects of fabrication and knitting structure on pressure reduction and redistribution are not apparent in this study. However,they have a major impact on the control of foot skin temperature and humidity. The results of the study provide a reference for optimizing the design and functional performance of socks for patients with diabetes.
基金supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(NRF-2021R1A2C1008380)Nano Material Technology Development Program[NRF-2015M3A7B6027970]+1 种基金the Chey Institute for Advanced Studies'International Scholar Exchange Fellowship for the academic year of 2021-2022supported by the Korea Institute of Energy Technology Evaluation and Planning(KETEP)grant funded by the Korea government(MOTIE)(20215710100170).
文摘Wearable and stretchable strain sensors have potential values in the fields of human motion and health monitoring,flexible electronics,and soft robotic skin.The wearable and stretchable strain sensors can be directly attached to human skin,providing visualized detection for human motions and personal healthcare.Conductive polymer composites(CPC)composed of conductive fillers and flexible polymers have the advantages of high stretchability,good flexibility,superior durability,which can be used to prepare flexible strain sensors with large working strain and outstanding sensitivity.This review has put forward a comprehensive summary on the fabrication methods,advanced mechanisms and strain sensing abilities of CPC strain sensors reported in recent years,especially the sensors with superior performance.Finally,the structural design,bionic function,integration technology and further application of CPC strain sensors are prospected.
基金This work was supported by Hong Kong ITF research project (No. ITS 098/02).
文摘SMPU (shape memory polyurethane) non-ionomers and ionomers, synthesized with poly(c-caprolactone) (PCL), 4, 4'-diphenylmethane diisocyanate (MDI), 1,4-butanediol (BDO), dimethylolpropionic acid (DMPA) were measured with cyclic tensile test and strain recovery test. The relations between the structure and shape memory effect of these two series were studied with respect to the ionic group content and the effect of neutralization. The resulting data indicate that, with the introduction of asymmetrical extender, the stress at 100% elongation is decreased for PU non-ionomer and ionomer series, especially lowered sharply for non-ionomer series; the fixation ratio of ionomer series is not affected obviously by the ionic group content; the total recovery ratio of ionomer series is decreased greatly. After sufficient relaxation time for samples stretched beforehand, the switching temperature is raised slightly, whereas the recovery ratio measured with strain recovery test method is lowered with increased DMPA content. The characterization with FT-IR, DSC, DMA elucidated that, the ordered hard domain of the two series is disrupted with the introduction of DMPA which causes more hard segments to dissolve in soft phase; ionic groups on hard segment enhance the cohesion between hard segments especially at high ionic group content and significantly facilitate the phase separation compared with the corresponding non-ionomer at moderate ionic group content.
基金The Hong Kong Polytechnic University for the funding support(Nos.1-YW1B,G-YBV2,and G-UACC).
文摘Wearable supercapacitors(SCs)are gaining prominence as portable energy storage devices.To develop high-performance wearable SCs,the significant relationship among material,structure,and performance inspired us with a delicate design of the highly wearable embroidered supercapacitors made from the conductive fibers composited.By rendering the conductive interdigitally patterned embroidery as both the current collector and skeleton for the SCs,the novel pseudocapacitive material cobalt phosphides were then successfully electrodeposited,forming the first flexible and wearable in-plane embroidery SCs.The electrochemical measurements manifested that the highest specific capacitance was nearly 156.6 mF cm?2(65.72 F g?1)at the current density of 0.6 mA cm?2(0.25 A g?1),with a high energy density of 0.013 mWh cm?2(5.55 Wh kg?1)at a power density of 0.24 mW cm?2(100 W kg?1).As a demonstration,a monogrammed pattern was ingeniously designed and embroidered on the laboratory gown as the wearable in-plane SCs,which showed both decent electrochemical performance and excellent flexibility.
文摘A low-threshold random laser with one mirror and feedback is investigated in the PMMA film containing rhodamine 590 and TiO2 nano-particles. Incoherent and coherent laser emission is observed. Effect of particle concentration on light emission is explored, and the optimum particle concentration is obtained. Optical microscopy and scanning probe microscopy are used to investigate the film structure, and the principle of incoherent and coherent laser is analysed.
基金Key Laboratory of Advanced Textile Materials and Manufacturing Technology (Zhejiang Sci-tech University),Ministry of Education (No.2006KF07)
文摘Digital jacquard fabric has its design concept and method directly borrowed from computer images and color modes, which enabled creation of jacquard fabric design that is far beyond what freehand patterns can express. In this paper, the principles of digital jacquard fabric design were classified into two parts, colorless mode and colorful mode, and an innovative layered combination design method has been suggested contenting with this new design concept, by which digital jacquard fabric can be designed from colorless single-layer structure to colorful compound structure. As a result, designed colorless and colorful jacquard fabrics are capable of expressing picturesque and photo-realistic effects with a mega level color number on face of fabric. It is envisaged that the results of the study are of tremendous benefit to the creation of new jacquard fabric with an inimitable digital effect and this creation pose no problem in mass production.
文摘The developments of Internet and e-commerce provide a new market place to businessman to sell their products and allow people to buy products via Internet as well as to create a new shopping media to consumers. The study aims to investigate the factors affecting consumers' purchase decision via Internet and how product characteristics affect cyber shopping in Hong Kong. The study has revealed that the security of personal data,delivery time, product brand and price were the major concerns for developing cyber market. For marketing apparel products, brand loyalty becomes very important since consumers' judging confidence on the products can be increased in terms of fitting standards and quality aspects.
基金supported by the National Natural Science Foundation of China (Grant No. 60874113)the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 200802550007)+3 种基金the Key Foundation Project of Shanghai,China(Grant No. 09JC1400700)the Key Creative Project of Shanghai Education Community,China (Grant No. 09ZZ66)the National Basic Research Development Program of China (Grant No. 2010CB731400)the Research Grants Council of the Hong Kong Special Administrative Region,China (Grant No. PolyU 5212/07E)
文摘In this paper, the pinning synchronization problem of stochastic delayed complex network (SDCN) is investigated by using a novel hybrid pinning controller. The proposed hybrid pinning controller is composed of adaptive controller and impulsive controller, where the two controllers are both added to a fraction of nodes in the network. Using the Lyapunov stability theory and the novel hybrid pinning controller, some sufficient conditions are derived for the exponential synchronization of such dynamical networks in mean square. Two numerical simulation examples are provided to verify the effectiveness of the proposed approach. The simulation results show that the proposed control scheme has a fast convergence rate compared with the conventional adaptive pinning method.
基金Project supported by the National Natural Science Foundation of China (Grant No.11102100)the Natural Science Foundation of Fujian Province,China (Grant No.2012J01017)the Scientific Research Special Foundation for Provincial University of Education Department of Fujian Province,China (Grant No.JK2011056)
文摘A novel analytical model to determine the heat flux of subcooled pool boiling in fractal nanofluids is developed. The model considers the fractal character of nanofluids in terms of the fractal dimension of nanoparticles and the fractal dimen- sion of active cavities on the heated surfaces; it also takes into account the effect of the Brownian motion of nanoparticles, which has no empirical constant but has parameters with physical meanings. The proposed model is expressed as a function of the subcooling of fluids and the wall superheat. The fractal analytical model is verified by a reasonable agreement with the experimental data and the results obtained from existing models.