Crystal nucleation is important to control the product properties in industrial crystallization processes. To investigate crystallization phenomena, methods which rely on microscopic volumes have gained relevance over...Crystal nucleation is important to control the product properties in industrial crystallization processes. To investigate crystallization phenomena, methods which rely on microscopic volumes have gained relevance over the last decade. Microfluidic devices are suitable for carrying out crystallization experiments based on a large set of individual droplets in the nanoliter range. In this work, we propose a simple method to manufacture such devices from polycarbonate as an alternative to conventional chips made of poly (dimethylsiloxane). The microfluidic device consists of two main functional parts: A T-junction for droplet generation and a section for storage and observation of up to 400 individual droplets. Using these manufactured devices, it is easy to produce and store highly monodisperse droplets of substances that require either a hydrophilic or hydrophobic surface of the microchannel. Since crystal nucleation is a stochastic process which depends on the sample volume, a reproducible droplet volume is of great importance for crystallization experiments. The versatile applicability of the manufactured devices is demonstrated for substances which are used in different crystallization applications, for example, solution crystallization (aqueous potassium nitrate solution) and melt crystallization (ethylene glycol distearate). Finally, we demonstrate that the manufactured microfluidic devices in our experimental setup can be used to conduct crystal nucleation measurements. Based on these measurements we discuss our results with respect to state-of-the-art nucleation models.展开更多
The paper presents new criteria for calculation of heat transfer coefficients and flow resistance during boiling inside vertical tubes with spring inserts, developed on the basis of own experimental research. Calculat...The paper presents new criteria for calculation of heat transfer coefficients and flow resistance during boiling inside vertical tubes with spring inserts, developed on the basis of own experimental research. Calculations of the geometric parameters of the spring insert were carried out using the Nelder-Mead optimization method for various optimization criteria(maximizing the increase ratios for heat transfer coefficient and flow resistance, minimizing entropy, own optimization criterion). The results of optimization calculations were verified by the optimization procedures available in Statistica.展开更多
The technique state to design counter-current extraction columns is based on the performance of pilot plant experiments. The modelling is then either with the equilibrium or dispersion model, whereas in the latter the...The technique state to design counter-current extraction columns is based on the performance of pilot plant experiments. The modelling is then either with the equilibrium or dispersion model, whereas in the latter the dispersion coefficient accounts for all hydrodynamic non-idealities. A new approach uses single droplet experiments to obtain the basic laws and functions governing droplet breakage, coalescence, relative velocity, and axial dispersion when using droplet populance balance models (DPBM). The hydrodynamics simulation results show that the mean Sauter diameter, hold-up, and concentration profiles could be well predicted, which promotes the use of DPBM models for further applications in industrial scale.展开更多
文摘Crystal nucleation is important to control the product properties in industrial crystallization processes. To investigate crystallization phenomena, methods which rely on microscopic volumes have gained relevance over the last decade. Microfluidic devices are suitable for carrying out crystallization experiments based on a large set of individual droplets in the nanoliter range. In this work, we propose a simple method to manufacture such devices from polycarbonate as an alternative to conventional chips made of poly (dimethylsiloxane). The microfluidic device consists of two main functional parts: A T-junction for droplet generation and a section for storage and observation of up to 400 individual droplets. Using these manufactured devices, it is easy to produce and store highly monodisperse droplets of substances that require either a hydrophilic or hydrophobic surface of the microchannel. Since crystal nucleation is a stochastic process which depends on the sample volume, a reproducible droplet volume is of great importance for crystallization experiments. The versatile applicability of the manufactured devices is demonstrated for substances which are used in different crystallization applications, for example, solution crystallization (aqueous potassium nitrate solution) and melt crystallization (ethylene glycol distearate). Finally, we demonstrate that the manufactured microfluidic devices in our experimental setup can be used to conduct crystal nucleation measurements. Based on these measurements we discuss our results with respect to state-of-the-art nucleation models.
基金part of research project N N512 458040,funded by the Polish National Science Centre
文摘The paper presents new criteria for calculation of heat transfer coefficients and flow resistance during boiling inside vertical tubes with spring inserts, developed on the basis of own experimental research. Calculations of the geometric parameters of the spring insert were carried out using the Nelder-Mead optimization method for various optimization criteria(maximizing the increase ratios for heat transfer coefficient and flow resistance, minimizing entropy, own optimization criterion). The results of optimization calculations were verified by the optimization procedures available in Statistica.
基金Supported by the AiF (Arbeitsgemeinschaft Industrieller Forschungsvereinigungen, "Otto von Guericke" e.V.), the BMWA (Bundesministerium für Wirtschaft und Arbeit) and the DFG (Deutsche Forschungsgemeinschaft)
文摘The technique state to design counter-current extraction columns is based on the performance of pilot plant experiments. The modelling is then either with the equilibrium or dispersion model, whereas in the latter the dispersion coefficient accounts for all hydrodynamic non-idealities. A new approach uses single droplet experiments to obtain the basic laws and functions governing droplet breakage, coalescence, relative velocity, and axial dispersion when using droplet populance balance models (DPBM). The hydrodynamics simulation results show that the mean Sauter diameter, hold-up, and concentration profiles could be well predicted, which promotes the use of DPBM models for further applications in industrial scale.