期刊文献+
共找到29篇文章
< 1 2 >
每页显示 20 50 100
Flexible Biofoams Based on Furanics and Fatty Acids Esterified Tannin
1
作者 Elham Azadeh Ummi Hani Abdullah +3 位作者 Christine Gerardin Antonio Pizzi Philippe Gerardin Cesar Segovia 《Journal of Renewable Materials》 EI 2023年第10期3625-3645,共21页
Water repellant,flexible biofoams using tannin esterified with various fatty acid chains,namely lauric,palmitic and oleic acids,by reaction with lauryl chloride,palmitoyl chloride,and oleyl chloride were developed and... Water repellant,flexible biofoams using tannin esterified with various fatty acid chains,namely lauric,palmitic and oleic acids,by reaction with lauryl chloride,palmitoyl chloride,and oleyl chloride were developed and their characteristics compared with the equivalently esterified rigid biofoams.Glycerol,while initially added to control the reaction temperature,was used as a plasticizer yielding flexible biofoams presenting the same water repellant character that the equivalent rigid foams.Acetaldehyde was used as the cross-linking agent instead of formaldehyde,as it showed a better performance with the esterified tannin.The compression results showed a significant decrease of the Modulus of Elasticity(MOE)of the flexible foams in relation to that of the rigid foams,confirming their flexible character.The lauryl-and palmitoyl-esterified biofoams presented similar mechanical properties,while the oleyl-esterified biofoam presented different mechanical and morphological result not really showing the expected flexibility.Both the esterified rigid and flexible tannin-based biofoams showed good water resistance and their sessile drop contact angle analysis as a function of time confirmed this characteristic.Scanning Electron Microscope(SEM)analysis showed the flexible foams to present a higher proportion of closed cells than the rigid foams.Conversely,the cells depth of the flexible foams was lower than that of the rigid foam.As regards their thermal resistance,the flexible foams showed a slight loss of mass compared to the rigid ones without glycerol.Both types of foams presented much lower surface friability of non-esterified rigid foams. 展开更多
关键词 Flexible tannin-furanic foams esterified tannins water repellence TGA SEM compression
下载PDF
Physical and damping properties of kenaf fibre filled natural rubber/thermoplastic polyurethane composites 被引量:3
2
作者 A.M.Noor Azammi S.M.Sapuan +1 位作者 Mohamad R.Ishak Mohamed T.H.Sultan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第1期29-34,共6页
The paper presents the investigation of the effect of alkaline treatment of sodium hydroxide(NaOH) on physical and dynamic mechanical analysis(DMA) viscoelastic properties of kenaf fibre filled natural rubber(NR)/ther... The paper presents the investigation of the effect of alkaline treatment of sodium hydroxide(NaOH) on physical and dynamic mechanical analysis(DMA) viscoelastic properties of kenaf fibre filled natural rubber(NR)/thermoplastic polyurethane(TPU) composites.The treated kenaf fiber,NR and TPU were weighed and proportioned according to the required compositions and were blended using hot mixed Brabender machine.The polymer composites were then fabricated using the hot press to form a sample board.The sample was cut and prepared and water absorption,density,thickness swelling and DMA tests were performed.As far as physical properties are concerned,composites with the highest NR amount of shows the best results,which indicates good fiber bonding adhesion.The polymer composites with the highest amount of TPU shows the highest damping properties at high temperature. 展开更多
关键词 KENAF fiber ALKALINE treatment THERMOPLASTIC POLYURETHANE Natural rubber Dynamic mechanical analysis
下载PDF
Effect of Fiber Loadings and Treatment on Dynamic Mechanical, Thermal and Flammability Properties of Pineapple Leaf Fiber and Kenaf Phenolic Composites 被引量:2
3
作者 M.Asim M.Jawaid +1 位作者 M.Nasir N.Saba 《Journal of Renewable Materials》 SCIE 2018年第4期383-393,共11页
This study deals with the analysis of dynamic mechanical,thermal and flammability properties of treated and untreated pineapple leaf fiber(PALF)and kenaf fiber(KF)phenolic composites.Results indicated that storage mod... This study deals with the analysis of dynamic mechanical,thermal and flammability properties of treated and untreated pineapple leaf fiber(PALF)and kenaf fiber(KF)phenolic composites.Results indicated that storage modulus was decreased for all composites with increases in temperature and pattern of slopes for all composites,having almost the same values of E′at glass transition temperature(Tg).The peak of the loss modulus of pure phenolic composites was shown to be much less.After the addition of kenaf/PALF,peaks were higher and shifted towards a high temperature.The Tan delta peak height was low for pure phenolic composites and maximum for 60%PALF phenolic composites.Cole-Cole analysis was carried out to understand the phase behavior of the composite samples.Thermogravimetric analysis(TGA)results indicated that pure phenolic composites have better thermal stability than PALF and kenaf phenolic composites.Vertical and horizontal UL-94 tests were conducted and showed pure phenolic resin is highly fire resistant.The overall results showed that treated KF composites enhanced the dynamic mechanical and thermal properties among all PALF/KF composites. 展开更多
关键词 Pineapple leaf FIBER KENAF FIBER PHENOLIC resin DYNAMIC MECHANICAL analysis thermogravimetric analysis FLAMMABILITY
下载PDF
Preliminary Study on Tensile and Impact Properties of Kenaf/Bamboo Fiber Reinforced Epoxy Composites 被引量:2
4
作者 Ahmad Safwan Mohammad Jawaid +1 位作者 Mohamed T.H.Sultan Azman Hassan 《Journal of Renewable Materials》 SCIE 2018年第5期529-535,共7页
The application of natural fibers as reinforcement in composite material has increased due to environmental concerns,low cost,degradability and health concerns.The purpose of this study is to identify the best type of... The application of natural fibers as reinforcement in composite material has increased due to environmental concerns,low cost,degradability and health concerns.The purpose of this study is to identify the best type of bamboo fibers to be used as reinforcement for kenaf(K)/bamboo hybrid composite.There were three types of bamboo fibers evaluated in this study which include bamboo mat(B),bamboo fabric(BF)and bamboo powder(BP).Chemical composition of B,BF,BP and K fibers were analyzed in this study.The effect of different types of bamboo fibers on tensile,impact,and morphological properties were investigated.The B/epoxy composites displayed the highest tensile strength(53.03 MPa)while K/epoxy composite had the highest tensile modulus(4.71 GPa).Scanning electron micrographs of B/epoxy composites displayed better fiber/matrix interfacial bonding in comparison to other studied composites.Results showed that impact strength of BF-based composite was highest(45.70 J/m).In conclusion,the tensile strength of B/epoxy composite is superior to the other bamboo reinforced composites and will be further evaluated in the next study. 展开更多
关键词 COMPOSITE KENAF BAMBOO natural fiber polymer composite tensile properties impact properties morphological properties
下载PDF
Mechanical and Thermal Properties of Sugar Palm Fiber Reinforced Thermoplastic Polyurethane Composites:Effect of Silane Treatment and Fiber Loading 被引量:1
5
作者 A.Atiqah M.Jawaid +1 位作者 S.M.Sapuan M.R.Ishak 《Journal of Renewable Materials》 SCIE 2018年第5期477-492,共16页
The aim of the present study was to develop sugar palm fiber(SPF)reinforced thermoplastic polyurethane(TPU)composites and to investigate the effects of fiber surface modification by 2%silane treatment and fiber loadin... The aim of the present study was to develop sugar palm fiber(SPF)reinforced thermoplastic polyurethane(TPU)composites and to investigate the effects of fiber surface modification by 2%silane treatment and fiber loading(0,10,20,30,40 and 50 wt%)on the mechanical and thermal properties of the obtained composites.Surface treatment was employed to improve the fiber-matrix interface,which was expected to boost the mechanical strength of the composites,in terms of tensile,flexural and impact properties.Thermal properties were also investigated by thermal gravimetric analysis(TGA)and dynamic mechanical analysis(DMA)to assess the thermal stability of the developed composites.Furthermore,scanning electron microscopy(SEM)was used to study the tensile fracture samples of composites with a view towards evaluating the effects of fiber surface treatments on the fiber/matrix interfacial bonding.The findings of this study reveal that the silane treatment has determined good bonding and linkage of the cellulose fiber to the TPU matrix,hence contributing to enhanced mechanical and thermal properties of the composites.The composite formulation with 40 wt%sugar palm fiber loading showed optimum values such as 17.22 MPa for tensile,13.96 MPa for flexural,and 15.47 kJ/m^2 for impact strength.Moreover,the formulations with higher fiber content exhibited satisfactory values of storage modulus and thermal degradation,while their good interfacial adhesion was evidenced by SEM images. 展开更多
关键词 Sugar palm fibers silane treatment thermoplastic polyurethane sugar palm fiber-reinforced composites mechanical properties thermo-mechanical properties
下载PDF
Manufacturing Process Selection of “Green” Oil Palm Natural Fiber Reinforced Polyurethane Composites Using Hybrid TEA Criteria Requirement and AHP Method for Automotive Crash Box 被引量:1
6
作者 N.S.B.Yusof S.M.Sapuan +1 位作者 M.T.H.Sultan M.Jawaid 《Journal of Renewable Materials》 SCIE EI 2020年第6期647-660,共14页
In this study,the best manufacturing process will be selected to build an automotive crash box using green oil palm natural fibre-reinforced polyurethane composite materials.This paper introduces an approach consist o... In this study,the best manufacturing process will be selected to build an automotive crash box using green oil palm natural fibre-reinforced polyurethane composite materials.This paper introduces an approach consist of technical aspects(T),the economic point of view(E)and availability(A),and it’s also called as TEA requirement.This approach was developed with the goal of assisting the design engineer in the selection of the best manufacturing process during the design phase at the criteria selection stage.In this study,the TEA requirement will integrate with the analytical hierarchy process(AHP)to assist decision makers or manufacturing engineers in determining the most appropriate manufacturing process to be employed in the manufacture of a composite automotive crash box(ACB)at the early stage of the product development process.It is obvious that a major challenge in the manufacturing selection process is lack of information regarding manufacturing of ACB using natural fibre composite(NFC).There have been no previous studies that examined ranking manufacturability processes in terms of their suitability.Therefore,the TEA-AHP hybrid method was introduced to provide unprejudiced criteria-ranking selection prior to evaluation of pairwise comparisons.At the end of this study,the pulforming process was selected as the best manufacturing process for fabrication of the ACB structural component. 展开更多
关键词 Manufacturing process selection automotive crash box natural fibre composites TEA requirement
下载PDF
The Effect of Fibre Length on Flexural and Dynamic Mechanical Properties of Pineapple Leaf Fibre Composites
7
作者 A.A.Mazlan M.T.H.Sultan +3 位作者 S.N.A.Safri N.Saba A.U.M.Shah M.Jawaid 《Journal of Renewable Materials》 SCIE EI 2020年第7期833-843,共11页
The present paper deals with the effect of loading different pineapple leaf fibre(PALF)length(short,mixed and long fibres)and their reinforcement for the fabrication of vinyl ester(VE)composites.Performance of PALF/VE... The present paper deals with the effect of loading different pineapple leaf fibre(PALF)length(short,mixed and long fibres)and their reinforcement for the fabrication of vinyl ester(VE)composites.Performance of PALF/VE composites was investigated through three-point bending flexural testing and viscoelastic(dynamic)mechanical properties through dynamic mechanical analysis(DMA).DMA results revealed that the long PALF/VE composites displayed better mechanical,damping factor and dynamic properties as compared to the short and mixed PALF/VE composites.The flexural strength and modulus of long PALF/VE composites were 113.5 MPa and 14.3 GPa,respectively.The storage(E′)and loss(E″)moduli increased to 2000 MPa and 225 MPa respectively for PALF/VE composites.Overall result analysis indicated that increasing the length of the reinforcement fibre results in satisfactory mechanical performance and dynamic properties of composites. 展开更多
关键词 Pineapple leaf fibre vinyl ester resin flexural strength dynamical mechanical properties damping factor
下载PDF
Effects of Planting Density of Rubber Tree Clone(RRIM 2020 Clone and RRIM 2025 Clone)Wood to Particleboard Properties
8
作者 Juliana Abdul Halip Syeed SaifulAzry Osman Al-Edrus +4 位作者 Seng Hua Lee Paridah Md Tahir Nor Yuziah Mohd Yunus Mohd Sapuan Salit Ahmad Ilyas Rushdan 《Journal of Renewable Materials》 SCIE EI 2022年第7期1951-1960,共10页
The depletion of log resources encourages research into alternative ways to sustain the wood supply.Therefore,the 4-year-old Rubber Research Institute of Malaysia(RRIM)clones series,RRIM 2020 and RRIM 2025,were chosen... The depletion of log resources encourages research into alternative ways to sustain the wood supply.Therefore,the 4-year-old Rubber Research Institute of Malaysia(RRIM)clones series,RRIM 2020 and RRIM 2025,were chosen as potential raw materials for particleboard in this study.The purpose of this study was to assess the effects of planting density and rubber tree clones on the mechanical and physical properties of single-layer particleboard.The planting densities used were low,moderate-low,moderate-high,and high,representing 500,1000,1500,and 2000 trees/ha,respectively.Prior to manufacturing,the RRIM 2000 series clone trees were harvested,cut,chipped,flaked,and screened.The mechanical and physical properties were evaluated in accordance with the Japanese Industrial Standard(JIS A 5908-2003).The findings revealed that both planting density and clone had a significant impact on the mechanical and physical properties of particleboard with a thickness of 10 mm and a density of 700 kg/m3.RRIM 2020 specimens with low planting density had superior modulus of elasticity(MOE),modulus of rupture(MOR),and internal bonding(IB)values of 2415,19,and 1.7 MPa,respectively.Furthermore,moderate-low planting density demonstrated the lowest thickness swelling(TS)and water absorption(WA)values and was comparable to control particleboard from commercial clone Prang Besar(PB),PB260.In terms of rubber clones,RRIM 2020 particleboard met the minimum requirements of the JIS standard for mechanical properties and outperformed RRIM 2025.This study recommended a low planting density of 500 trees/ha and the RRIM 2020 clone as a suitable raw material for particleboard manufacturing with a ten percent urea formaldehyde resin content. 展开更多
关键词 Rubberwood RRIM 2020 RRIM 2025 MECHANICAL PHYSICAL urea formaldehyde
下载PDF
Bending,Compression and Bonding Performance of Cross-Laminated Timber(CLT)Made from Malaysian Fast-Growing Timbers
9
作者 Norshariza Mohamad Bhkari Lum Wei Chen +4 位作者 Anis Azmi Muhammad Shaiful Nordin Norman Wong Shew Yam Zakiah Ahmad Lee Seng Hua 《Journal of Renewable Materials》 SCIE EI 2022年第11期2851-2869,共19页
This study investigated the bending,compression as well as the bonding performance of CLT panels made from fast-growing timber species,i.e.,Laran(Neolamarckia cadamba)and Batai(Paraserianthes falcataria).The variables... This study investigated the bending,compression as well as the bonding performance of CLT panels made from fast-growing timber species,i.e.,Laran(Neolamarckia cadamba)and Batai(Paraserianthes falcataria).The variables studied were timber species(Laran and Batai),layers of lamination(3-layer and 5-layer),loading direction in bending(in-plane and out-of-plane),loading direction in compression(x-,y-,and z-axis)and different treatment conditions for bonding performance test.The desired outputs of this study were bending and compression properties(strength and stiffness)as well as bonding performance(block shear strength,wood failure percentage and delamination value).The bending and compression test were conducted according to EN16351:2015 and EN408:2012,respectively.On the other hand,the bonding performance test was determined by block shear and delamination test based on EN16351:2015 and EN14374:2004,respectively.Prior to block shear test,the samples were subjected to three different treatment conditions.The results showed that CLT made from 3-layer Laran timber,loaded at out-of-plane direction exhibited the highest bending properties.Contrarily,CLT made from 5-layered Batai timber,loaded at in-plane direction showed the lowest bending properties.Laran samples for compression loaded at x-axis exhibited the best compressive properties.Generally,Laran CLT showed greater bonding performance determined by shear test compared to Batai CLT for both 3-and 5-layer panels.On the contrary,delamination results showed that Batai CLT demonstrated better bonding performance compared to Laran CLT.In terms of bonding performance measured by wood failure percentage(WFP),most samples under various treatment conditions showed WFP≥80%except for samples under wet condition with WFP≤60%. 展开更多
关键词 Cross-laminated timber plantation timber flexural performance bonding performance
下载PDF
Conceptual design of automobile engine rubber mounting composite using TRIZ-Morphological chart-analytic network process technique 被引量:8
10
作者 A.M.Noor Azammi S.M.Sapuan +1 位作者 M.R.Ishak Mohamed T.H.Sultan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2018年第4期268-277,共10页
An engine rubber mounting is one of the important parts of a vehicle. It is a function to isolate or absorb and to reduce vibration to the vehicle body thus to the passenger itself. Due to the engine compartments envi... An engine rubber mounting is one of the important parts of a vehicle. It is a function to isolate or absorb and to reduce vibration to the vehicle body thus to the passenger itself. Due to the engine compartments environment such as heat and massive vibration due to road conditions, the engine rubber mountings lifespan has been reduced. Thus several studies have been conducted to upgrade the material lifespan to make it more reliable and better engine mounting components. This paper presents the conceptual design of kenaf fiber polymer as automotive engine rubber mounting composites using the integration of Theory of Inventive Problem Solving(TRIZ). In this early stage, the solution is generated using 40 inventive principles and TRIZ contradiction method. The solution parameter for the specific design character is the selected using the morphological chart to develop a systematic conceptual design for the component. Four(4) innovative design concepts were produced and Analytic Network Process(ANP)methods were utilized to perform the multi-criteria decision-making process of selecting the best concept design for the polymer composite engine rubber mounting component. 展开更多
关键词 TRIZ ANP MORPHOLOGICAL Automotive composites component Engine rubber COMPOSITE MOUNTING
下载PDF
Effect of fibre orientations on the mechanical properties of kenaf–aramid hybrid composites for spall-liner application 被引量:7
11
作者 R.YAH AYA S.M.SAPUAN +2 位作者 M.JAWAID Z.LEMAN E.S.ZAINUDIN 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2016年第1期52-58,共7页
This paper presents the effect of kenaf fibre orientation on the mechanical properties of kenaf–aramid hybrid composites for military vehicle's spall liner application. It was observed that the tensile strength o... This paper presents the effect of kenaf fibre orientation on the mechanical properties of kenaf–aramid hybrid composites for military vehicle's spall liner application. It was observed that the tensile strength of woven kenaf hybrid composite is almost 20.78% and 43.55% higher than that of UD and mat samples respectively. Charpy impact strength of woven kenaf composites is 19.78% and 52.07% higher than that of UD and mat kenaf hybrid composites respectively. Morphological examinations were carried out using scanning electron microscopy. The results of this study indicate that using kenaf in the form of woven structure could produce a hybrid composite material with high tensile strength and impact resistance properties. 展开更多
关键词 芳纶复合材料 材料力学性能 纤维取向 红麻 应用 剥落 编织复合材料 扫描电子显微镜
下载PDF
Recent applications of carbon-based composites in defence industry: A review 被引量:6
12
作者 M.M.Harussani S.M.Sapuan +2 位作者 Gohar Nadeem Tahrim Rafin W.Kirubaanand 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第8期1281-1300,共20页
Carbon-based composites, including carbon reinforced composites and carbon-matrix composites, in defence technologies have raised a lot of attention due to its significant physical capabilities, superior thermal and m... Carbon-based composites, including carbon reinforced composites and carbon-matrix composites, in defence technologies have raised a lot of attention due to its significant physical capabilities, superior thermal and mechanical stability, and its eco-friendly nature. Carbon-based composite which incorporating with various carbonaceous materials such as coke, char, black carbon, activated carbon, carbon fibre and other carbon nanomaterials (carbon nanotubes, carbon nanofibres, graphene and graphite) are the greatest viable option for the development of advanced defence technologies. In this review article the characteristics of carbon-based materials and its composites are discussed for their distinct application in defence sectors;aeronautics, maritime, automotive, electronics, energy storage, electromagnetic interference (EMI) shielding and structures. The origin of carbonaceous materials and its production techniques were discussed. Carbon-based composites have a promising future in defence technology, particularly in chemical sensors, drug delivery agents, radar technologies, and nanocomposites due to their low cost, easy availability, flexibility in design and processing. 展开更多
关键词 Carbon materials CHAR CARBON CNT GRAPHENE Composite Defence technology
下载PDF
Crashworthiness performance of hybrid kenaf/glass fiber reinforced epoxy tube on winding orientation effect under quasi-static compression load 被引量:4
13
作者 A.B.M.Supian S.M.Sapuan +2 位作者 M.Y.M.Zuhri E.S.Zainudin H.H.Ya 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第5期1051-1061,共11页
This research was aimed to study the effect winding orientation on the crashworthiness performance of hybrid tube.The specimens tested under quasi-static compression load involve of three winding parameters(q?30,45a... This research was aimed to study the effect winding orientation on the crashworthiness performance of hybrid tube.The specimens tested under quasi-static compression load involve of three winding parameters(q?30,45and 70)of hybrid kenaf/glass fiber reinforced epoxy and glass fiber reinforced epoxy as contrast specimen.The automated filament winding technique has been used in fabrication of hybrid and non-hybrid composite tube and crashworthiness performance was investigated experimentally.The effects of winding orientation on energy absorption capabilities and crashworthiness characteristic were investigated through quasi-static compression load and the result are compared with the glass fiber composite tube to justify the capability of hybrid natural/synthetic as energy absorption application.Hybridized samples proved to enhancing the progressive crushing capability as combination of local buckling,delaminate and brittle fracturing as progressive crushing modes.In the view of winding orientation aspect,the results of high winding orientation of hybrid composite tube elevated the crush load efficiency,specific energy absorption and energy absorption capability compared to glass composite tube(GFRP).The hybrid kenaf/glass composite tube with high winding orientation showed the best winding orientation to enhance the energy absorber characteristics as energy absorption application. 展开更多
关键词 composite LAMINATE WINDING
下载PDF
Effect of Hybridization on the Mechanical Properties of Pineapple Leaf Fiber/Kenaf Phenolic Hybrid Composites 被引量:2
14
作者 M.Asim M.Jawaid +2 位作者 K.Abdan M.R.Ishak O.Y.Alothman 《Journal of Renewable Materials》 SCIE 2018年第1期38-46,共9页
In this study,pineapple leaf fiber(PALF),kenaf fiber(KF)and PALF/KF/phenolic(PF)composites were fabricated and their mechanical properties were investigated.The mechanical properties(tensile,flexural and impact)of the... In this study,pineapple leaf fiber(PALF),kenaf fiber(KF)and PALF/KF/phenolic(PF)composites were fabricated and their mechanical properties were investigated.The mechanical properties(tensile,flexural and impact)of the PALF/KF/PF hybrid composites were investigated and compared with PALF/KF composites.The 3P7K exhibited enhanced tensile strength(46.96 MPa)and modulus(6.84 GPa),flexural strength(84.21 MPa)and modulus(5.81 GPa),and impact strength(5.39 kJ/m2)when compared with the PALF/PF and KF/PF composites.Scanning electron microscopy(SEM)was used to observe the fracture surfaces of the tensile testing samples.The microstructure of the 7P3K hybrid composite showed good interfacial bonding and the addition of KF improved the interfacial strength.It has been concluded that the 3P7K ratio allowed obtaining materials with better mechanical properties(tensile,flexural and impact strengths)than PALF/PF and KF/PF composites.The results obtained in this study will be used for further comparative study of untreated hybrid composites with treated hybrid composites. 展开更多
关键词 Pineapple leaf fiber kenaf fiber phenolic resin hybrid composites mechanical properties
下载PDF
Dimensional Stability Properties of Medium Density Fibreboard (MDF) from Treated Oil Palm (Elaeis guineensis) Empty Fruit Bunches (EFB) Fibres 被引量:1
15
作者 Zawawi Ibrahim Mansur Ahmad +4 位作者 Astimar Abdul Aziz Ridzuan Ramli Mohd Ariff Jamaludin Suhaimi Muhammed Aisyah Humaira Alias 《Open Journal of Composite Materials》 2016年第4期91-99,共9页
The aim of the study was to investigate the effect of pre-treatments by using sodium hydroxide (NaOH) and acetic acid on oil palm Empty Fruit Bunch (EFB) fibres for the production of Medium Density Fibreboard (MDF). T... The aim of the study was to investigate the effect of pre-treatments by using sodium hydroxide (NaOH) and acetic acid on oil palm Empty Fruit Bunch (EFB) fibres for the production of Medium Density Fibreboard (MDF). The EFB fibres were treated with chemicals in the concentration range of 0.2%, 0.4%, 0.6% and 0.8% prior to refining. Single-homogenous layer MDF with 12 mm thickness and density of 720 kg/m3 was produced. Urea-Formaldehyde (UF) was applied at 10% loading (based on dry weight of dry fibres) as a binder. The physical properties (Water Absorption (WA) and Thickness Swelling (TS)) of the produced panels were tested according to European Standard, EN 622-5:2006. The results show that types of chemical used had greater effects than concentration on the dimensional stability of the MDF. EFB fibres treated with acetic acid produced MDF with better dimensional stability compared to the MDF NaOH treated fibres. High concentration of NaOH produced poor dimensional stability in the panels. 展开更多
关键词 Empty Fruit Bunch Sodium Hydroxide Acetic Acid Dimensional Stability Thickness Swelling Water Absorption
下载PDF
Comparison of three processing methods for laminated bamboo timber production
16
作者 Edi Suhaimi Bakar Muhammad Nadzim Mohd Nazip +1 位作者 Rogerson Anokye Lee Seng Hua 《Journal of Forestry Research》 SCIE CAS CSCD 2019年第1期363-369,共7页
Three processing techniques, split-squaring(SS),V-grooving(VG), and split-edging(SE), were evaluated and compared in terms of their processing time and recovery. Semantan bamboo(Gigantochloa scortechinii Gamble) was u... Three processing techniques, split-squaring(SS),V-grooving(VG), and split-edging(SE), were evaluated and compared in terms of their processing time and recovery. Semantan bamboo(Gigantochloa scortechinii Gamble) was used as a raw material and the results showed that the VG-method required the longest processing time(32.1 min), followed by the SS-method(18.2 min), and the SE-method(17.9 min). However, the VG-method showed the highest recovery(82.0%) compared to the SS-method and SE-method, 31.0 and 49.4%, respectively. When both processing time and recovery factors were combined with the same weighing factor, the highest value was recorded with the VG-method(49.1), while the SE-method had values of 31.1 and the SS-method 12.8. The results suggest that the VG-method is the best option. However, the V-grooving machine is still a prototype and therefore the SE-method could be an alternative option until the improved V-grooving machine is available. 展开更多
关键词 BAMBOO CULM LAMINATED BAMBOO timber Vgrooving METHOD Split-squaring METHOD Split-edging METHOD
下载PDF
Conceptual Design of Glass/Renewable Natural Fibre-Reinforced Polymer Hybrid Composite Motorcycle Side Cover
17
作者 M.A.F.A.Wahab S.M.Sapuan +2 位作者 M.M.Harussani M.Y.M.Zuhri A.A.Saleh 《Journal of Renewable Materials》 SCIE EI 2021年第11期1973-1989,共17页
This paper presents the development process relating to the conceptual design of glass/renewable natural fibrereinforced polymer hybrid composite motorcycle side cover.Motorcycle side cover is a component frequently m... This paper presents the development process relating to the conceptual design of glass/renewable natural fibrereinforced polymer hybrid composite motorcycle side cover.Motorcycle side cover is a component frequently made from plastic or steel that functions on covering the motorcycle parts,components and systems such as frame,battery,electrical systems and mechanical systems.Function Analysis Systems Techniques(FAST)is used to identify the functions of motorcycle side cover.The right-side cover of motorcycle model SYM E-Bonus 110 has been physically studied to identify the competitive benchmarking criteria.The functions and competitive benchmarking criteria are then compiled and integrated with the environmental requirements to identify the Product Design Specifications(PDS).The coir fibre has been selected from six identified dominant renewable natural fibre used for automotive component through integration of Ranking Method and Quality Based Selection(QBS).Then the polypropylene matrix is selected after shortlisting the existing thermoplastic that is used with coir fibre and has high suitability for injection moulding manufacturing.The polypropylene matrix is then evaluated using Weighted Evaluation Matrix(WEM)by comparing to benchmark material which is Acrylonitrile Butadiene Styrene(ABS).After that,the conceptual design development of glass/renewable coir fibre-reinforced polypropylene motorcycle side cover is carried out using an integrated Theory of Inventive Problem Solving(TRIZ)and Morphological Chart,followed by final conceptual design selection using integration of Pugh Scoring Method and QBS.The conceptual design development intended on improving the biodegradability to reduce pollution to the environment.However,the usage of glass/coir fibre-reinforced polypropylene hybrid composite may increase the weight due to higher density.Four innovative design concepts have been developed and the selected final concept design has the most minimum number of ribs and minimum thickness with the same ratio of glass fibre and natural fibre composition. 展开更多
关键词 Renewable natural fibre coir fibre hybrid composite conceptual design PDS TRIZ morphological chart QBS FAST diagram WEM natural fibre selection pugh scoring method
下载PDF
Conceptual Design of Natural Fiber Composites as a Side-Door Impact Beam Using Hybrid Approach
18
作者 M.A.Shaharuzaman S.M.Sapuan +1 位作者 M.R.Mansor M.Y.M.Zuhri 《Journal of Renewable Materials》 SCIE EI 2020年第5期549-563,共15页
This paper presents the conceptual design stage in the product development process of a natural fiber composites of the side-door impact beam,which starts from idea generation to the selection of the best design conce... This paper presents the conceptual design stage in the product development process of a natural fiber composites of the side-door impact beam,which starts from idea generation to the selection of the best design concept.This paper also demonstrates the use of the integrated Theory of Inventive Problem Solving(Function-Oriented Search)(TRIZ(FOS))and Biomimetics method,as well as the VIseKriterijumska Optimizacija I Kompromisno Resenje(VIKOR)method.The aim of this study was to generate design concepts that were inspired by nature and to select the best design concept for the composite side-door impact beam.Subsequently,eight design concepts were generated using the TRIZ(FOS)-Biomimetics method and finite element analysis were used to analyse their performance and weight criteria using ANSYS software.VIKOR method was used as the multiple criteria decision making tools to compare their performances,weight and cost criteria.As a result,design concepts B-03 and C-02 were ranked as the first and second best,with VIKOR value of 0.0156 and 0.1178,respectively,which satisfied the conditions in VIKOR method.This paper shows that the integrated method of TRIZ(FOS)-Biomimetics and VIKOR can assist researchers and engineers in developing designs that are inspired by nature,as well as in selecting the best design concept using a systematic strategy and justified solutions during the conceptual design stage. 展开更多
关键词 Theory of inventive problem solving TRIZ(FOS) biomimetics VIseKriterijumska Optimizacija I Kompromisno Resenje VIKOR side-door impact beam
下载PDF
Cellulose Nanocrystal from Washingtonia Fibre and Its Characterization
19
作者 Mohammad Jawaid Lau Kia Kian +3 位作者 Hassan Fouad Ramzi Khiari Othman Y.Alothman Mohamed Hashem 《Journal of Renewable Materials》 SCIE EI 2022年第6期1459-1470,共12页
Cellulose nanocrystal(CNC)is a biomaterial derived from plant lignocellulosic components,widely applied in various industrial fields.Concurrently,with the growth of awareness in developing green nanomaterial,the explo... Cellulose nanocrystal(CNC)is a biomaterial derived from plant lignocellulosic components,widely applied in various industrial fields.Concurrently,with the growth of awareness in developing green nanomaterial,the explored Washingtonia fibre could be alternative biomass for obtaining CNC products.In the present work,different acid concentrations of 5%,15%,and 25%hydrochloric solutions were employed to produce CNCs from Washingtonia fibre.With the chemical treatments,the yield of the CNC product was successfully retained at 21.6%-25.1%.Individually separated and needle-shaped CNC particles could be observed under the microscopic viewing with the increased acid concentrations.From elemental analysis,a relatively pure cellulose compartment was produced for all CNC samples.The zeta potential values between-10 to-16 mV proved that each nanoparticle sample possessed dispersion ability within an aqueous solution.Meanwhile,the degree of crystallinity and the thermal behavior of CNCs were enhanced with the increased acidic concentrations.Hence,the isolated CNCs(with 15%)from Washingtonia fibre lead a CNC with the highest aspect ratio(30).This parameter is so important that these structures show empowering points of view as nanomaterials for reinforced polymer composites,and it could be a reliable nano-filler for the composite fabrication process in the future. 展开更多
关键词 Cellulose nanocrystal washingtonia fibre STRUCTURE degree of crystallinity thermal behavior
下载PDF
Material Selection of a Natural Fibre Reinforced Polymer Composites using an Analytical Approach
20
作者 M.Noryani S.M.Sapuan +2 位作者 M.T.Mastura M.Y.M.Zuhri E.S.Zainudin 《Journal of Renewable Materials》 SCIE 2019年第11期1165-1179,共15页
Material selection has become a critical part of design for engineers,due to availability of diverse choice of materials that have similar properties and meet the product design specification.Implementation of statist... Material selection has become a critical part of design for engineers,due to availability of diverse choice of materials that have similar properties and meet the product design specification.Implementation of statistical analysis alone makes it difficult to identify the ideal composition of the final composite.An integrated approach between statistical model and micromechanical model is desired.In this paper,resultant natural fibre and polymer matrix from previous study is used to estimate the mechanical properties such as density,Young’s modulus and tensile strength.Four levels of fibre loading are used to compare the optimum natural fibre reinforced polymer composite(NFRPC).The result from this analytical approach revealed that kenaf/polystyrene(PS)with 40%fibre loading is the ideal composite in automotive component application.It was found that the ideal composite score is 1.156 g/cm^(3),24.2 GPa and 413.4 MPa for density,Young’s modulus and tensile strength,respectively.A suggestion to increase the properties on Young’s modulus are also presented.This work proves that the statistical model is well incorporated with the analytical approach to choose the correct composite to use in automotive application. 展开更多
关键词 Material selection natural fibre reinforced polymer composites rule of mixtures
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部