The combined surface and groundwater allocation practice by wells and canals had contributed to the safety of groundwater environment and agriculture sustainable production. The typical area in the People's Victory C...The combined surface and groundwater allocation practice by wells and canals had contributed to the safety of groundwater environment and agriculture sustainable production. The typical area in the People's Victory Canal irrigation district was taken as a case, drawing together the irrigation district agriculture water consumption and precipitation from 1954 to 2014 in the People's Victory Canal irrigation district, ratios of surface to groundwater irrigation amount, dynamic of groundwater depth and hydrochemical characteristic of groundwater from 2008 to 2014 in the research area, the relationship between groundwater depth and ratio of surface to groundwater irrigation amount was analyzed, in order to ascertain the influence of precipitation on ratios of surface to groundwater irrigation amount and its effect on soil and groundwater environment. The results indicated that positive correlation between the ratios of surface to groundwater irrigation amount and annual precipitation was appeared, affected by climate change, average irrigation amount from surface in the recent 5 years was 2.90 x 108 cubic meters, accounted for 75.52% of total irrigation amount, on the other hand, decreasing tendency of precipitation was obvious, and groundwater depth dynamic in upstream of the branch canals was more dramatic than downstream because of surface water irrigation infiltration, under the unified condition of water use efficiency, ratio of surface to groundwater irrigation amount was negative correlation with area of the groundwater depth beyond 11 m, meanwhile, groundwater depth demonstrated negative correlation with the ratio of surface to groundwater irrigation amount, moreover, alkaline trend of groundwater hydrochemistry during the normal season in the research area was obvious because of phreatic evaporation and the agricultural irrigation from wells, along with irrigation from surface inflow of Yellow River, quality of groundwater hydrochemistry during the dry season was ameliorative greatly. Consequently, it was very important to the agriculture sustainable production that well-canal combined irrigation patterns alleviated extremely alkaline trend of the groundwater hydrochemistry and played a positive role of root layer soil salinity leaching.展开更多
Muddy water irrigation,an effective water-saving irrigation method,has been widely used in the Yellow River Basin in China.To investigate the effect of sand content on water infiltration and dense layer formation unde...Muddy water irrigation,an effective water-saving irrigation method,has been widely used in the Yellow River Basin in China.To investigate the effect of sand content on water infiltration and dense layer formation under one-dimensional vertical infiltration of muddy water,muddy water infiltration experiments were performed in the laboratory,and five sand contents of muddy water(S=0%,3%,6%,9%,and 12%)were used.Models were established to describe the relationship between the cumulative infiltration amount[I(t)]and the infiltration duration(t);the relationship among the migration distance of the wetting front(Z),S,and t;the thickness of the sedimentary layer[H(t)];and the relationship between S and t.The results revealed that I(t)and Z decreased significantly with the increase of sand contents,while H(t)increased significantly with the increase of sand contents.I(t)and Z were in the range of 7 cm and 20 cm for each treatment,respectively.The variation in I(t)with t fitted Kostiakov and Philip models,and the coefficients of determination were all greater than 0.99.With the increase in S,the infiltration coefficient gradually decreased,the infiltration index gradually increased,and the sorptivity gradually decreased.The particle composition of the sedimentary layer was similar to that of the argillaceous sediment,and the content of particles with a size of less than 2 mm in the sedimentary layer was lower than that of the argillaceous sediment.Compared with the original soil,the content of particles with a size of less than 0.05 mm and physical clay particles(diameter less than 0.01 mm)in the soil with an infiltration depth of 0-2 cm increased.The retention layer was from the topsoil to the infiltration depth of approximately 2 cm.This study can provide a scientific basis for further research on soil infiltration mechanisms under muddy water.展开更多
The transport of La(III) through a dispersion supported liquid membrane with polyvinylidene fluoride membrane as the liquid membrane support and dispersion solution including HCl solution as the stripping solution and...The transport of La(III) through a dispersion supported liquid membrane with polyvinylidene fluoride membrane as the liquid membrane support and dispersion solution including HCl solution as the stripping solution and 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester (PC-88A) in kerosene as the membrane solution, was studied. As a result, the optimum transport conditions of La(Ⅲ) were obtained as that concentration of HCl solution was 4.0 mol/L, concentration of PC-88A 0.16 mol/L, and volume ratio of membrane to stripping solution 30:30 in the dispersion phase, and pH value 4.0 in the feed phase. Ionic strength had no obvious effect on the transport of La(Ⅲ). Under the optimum conditions, when initial concentration of La(Ⅲ) was 0.8×10-4 mol/L, the transport rate was up to 96.3% during the transport time of 125 min. The kinetic equation was developed based on the law of mass diffusion and theory of interface chemistry. The diffusion coefficient of La(Ⅲ) in the membrane and the thickness of diffusion layer between feed and membrane phases were obtained as 3.20×10-7 m2/s and 3.22×10-5 m, respectively. The calculated results were in good agreement with experimental results.展开更多
Extracting implicit anomaly information through deformation monitoring data mining is highly significant to determining dam safety status.As an intelligent singular value diagnostic method for concrete dam deformation...Extracting implicit anomaly information through deformation monitoring data mining is highly significant to determining dam safety status.As an intelligent singular value diagnostic method for concrete dam deformation monitoring, shallow neural network models result in local optima and overfitting, and require manual feature extraction.To obtain an intelligent singular value diagnosis model that can be used for dam safety monitoring, a convolutional neural network (CNN) model that has advantages of deep learning (DL), such as automatic feature extraction, good model fitting, and strong generalizability, was trained in this study.An engineering example shows that the predicted result of the intelligent singular value diagnostic method based on CNN is highly compatible with the confusion matrix, with a precision of 92.41%, receiver operating characteristic (ROC) coordinates of (0.03, 0.97), an area-under-curve (AUC) value of 0.99, and an F1-score of 0.91.Moreover, the performance of the CNN model is better than those of models based on decision tree (DT) and k-nearest neighbor (KNN) methods.Therefore, the intelligent singular value diagnostic method based on CNN is simple to operate, highly intelligent, and highly reliable, and it has a high potential for application in engineering.展开更多
A dynamic uniform Cartesian grid system was developed in order to reduce the computational time in inundation simulation using a Godunov-type finite volume scheme. The reduction is achieved by excluding redundant dry ...A dynamic uniform Cartesian grid system was developed in order to reduce the computational time in inundation simulation using a Godunov-type finite volume scheme. The reduction is achieved by excluding redundant dry cells, which cannot be effectively avoided with a conventional Cartesian uniform grid system, as the wet area is unknown before computation. The new grid system expands dynamically with wetting, through addition of new cells according to moving wet-dry fronts. The new grid system is straightforward in implementation. Its application in a field-scale flood simulation shows that the new grid system is able to produce the same results as the conventional grid, but the computational efficiency is fairly improved.展开更多
Aiming at the low accuracy problem of power system short-term load forecasting by traditional methods, a back-propagation artificial neural network (BP-ANN) based method for short-term load forecasting is presented ...Aiming at the low accuracy problem of power system short-term load forecasting by traditional methods, a back-propagation artificial neural network (BP-ANN) based method for short-term load forecasting is presented in this paper. The forecast points are related to prophase adjacent data as well as the periodical long-term historical load data. Then the short-term load forecasting model of Shanxi Power Grid (China) based on BP-ANN method and correlation analysis is established. The simulation model matches well with practical power system load, indicating the BP-ANN method is simple and with higher precision and practicality.展开更多
The aim of this study is to improve the bond performance of basalt fiber reinforced polymer(BFRP)bars and recycled aggregate concrete(RAC)after being exposed to high temperatures.The bond behavior(failure modes,bond s...The aim of this study is to improve the bond performance of basalt fiber reinforced polymer(BFRP)bars and recycled aggregate concrete(RAC)after being exposed to high temperatures.The bond behavior(failure modes,bond strength,bond stress-slip curves)between BFRP bars and hybrid fiber recycled aggregate concrete(HFRAC)after being exposed to temperatures ranging from 20℃up to 500℃was studied by using pull-out tests.The effect of high temperatures on mechanical properties of concrete(compressive strength,splitting tensile strength)and tensile strength of BFRP bars was also investigated.The bond strength decreased as the temperature increased and the drop of bond strength between RAC and BFRP bar was larger than that between HFRAC and BFRP bar.As the temperature rises,the key factor affecting the bond strength was gradually transformed from concrete strength to BFRP bar strength.The relationship between bond stress and slip in the dimensionless bond stress-slip ascending section was established,which was in good agreement with the experimental results.展开更多
The transport of Dy(III) through a dispersion supported liquid membrane (DSLM) consisting of polyvinylidene fluoride membrane (PVDF) as the liquid membrane support and dispersion solution including HCI solution ...The transport of Dy(III) through a dispersion supported liquid membrane (DSLM) consisting of polyvinylidene fluoride membrane (PVDF) as the liquid membrane support and dispersion solution including HCI solution as the stripping solution and 2-ethyl hexyl phosphonic acid-mono-2-ethyl hexyl ester (PC-88A) dissolved in kerosene as the membrane solution, was studied. The effects of pH value, initial concentration of Dy(III) and different ionic strength in the feed phase, volume ratio of membrane solution and stripping solution, concentration of HCl solution, concentration of carrier, different stripping agents in the dispersion phase on transport of Dy(III) were also investigated, respectively. As a result, when the concentration of HCI solution was 4.0 mol/L, concentration of PC-88A was 0.10 mol/L, and volume ratio of membrane solution and stripping solution was 40:20 in the dispersion phase, and pH value was 5.0 in the feed phase, the transport effect of Dy(III) was the best. Ionic strength had no obvious effect on transport of Dy(III). Under the optimum condition studied, when initial concentration of Dy(III) was 0.8×10^-4 mol/L, the transport rate of Dy(III) was up to 96.2% during the transport time of 95 rain. The kinetic equation was developed in terms of the law of mass diffusion and the theory of interface chemistry. The diffusion coefficient of Dy(III) in the membrane and the thickness of diffusion layer between feed phase and membrane phase were obtained and the values were 1.99×10^-7 m^2/s and 15.97 μm, respectively. The results were in good agreement with experimental results.展开更多
In order to ease the contradiction between people and land and ensure the needs of construction land and farmland,this paper analyzes the demand and regional land development background,and points out the problems of ...In order to ease the contradiction between people and land and ensure the needs of construction land and farmland,this paper analyzes the demand and regional land development background,and points out the problems of the development of the land in China: late start of land development and utilization practices; declining back-up resources and sharply increasing costs; new resources and environmental problems brought about by development and utilization of land in some areas. This paper presents a new opportunity and strategy for land use transition: giving full play to the agricultural and geographical advantages of farming-pastoral area; carrying out water-saving technologies and intensive use of agricultural land in water-deficient areas,in order to achieve reasonable and efficient development and utilization.展开更多
We have performed numerical simulations of localized travelling-wave convection in a binary fluid mixture heated from below in a long rectangular container. Calculations are carried out in a vertical cross section of ...We have performed numerical simulations of localized travelling-wave convection in a binary fluid mixture heated from below in a long rectangular container. Calculations are carried out in a vertical cross section of the rolls perpendic- ular to their axes. For a negative enough separation ratio, two types of quite different confined states were documented by applying different control processes. One branch of localized travelling waves survives only in a very narrow band within subcritical regime, while another branch straddles the onset of convection existing both in subcritical and super- critical regions. We elucidated that concentration field and its current are key to understand how confined convection is sustained when conductive state is absolutely unstable, The weak structures in the conducting region are demonstrated too.展开更多
Scientific forecasting water yield of mine is of great significance to the safety production of mine and the colligated using of water resources. The paper established the forecasting model for water yield of mine, co...Scientific forecasting water yield of mine is of great significance to the safety production of mine and the colligated using of water resources. The paper established the forecasting model for water yield of mine, combining neural network with the partial least square method. Dealt with independent variables by the partial least square method, it can not only solve the relationship between independent variables but also reduce the input dimensions in neural network model, and then use the neural network which can solve the non-linear problem better. The result of an example shows that the prediction has higher precision in forecasting and fitting.展开更多
Ferroresonance is a complex nonlinear electrotechnical phenomenon, which can result in thermal and electrical stresses on the electric power system equipments due to the over voltages and over currents it generates. T...Ferroresonance is a complex nonlinear electrotechnical phenomenon, which can result in thermal and electrical stresses on the electric power system equipments due to the over voltages and over currents it generates. The prediction or determination of ferroresonance depends mainly on the accuracy of the model used. Fractional-order models are more accurate than the integer-order models. In this paper, a fractional-order ferroresonance model is proposed. The influence of the order on the dynamic behaviors of this fractional-order system under different parameters n and F is investigated. Compared with the integral-order ferroresonance system, small change of the order not only affects the dynamic behavior of the system, but also significantly affects the harmonic components of the system. Then the fractional-order ferroresonance system is implemented by nonlinear circuit emulator. Finally, a fractional-order adaptive sliding mode control (FASMC) method is used to eliminate the abnormal operation state of power system. Since the introduction of the fractional-order sliding mode surface and the adaptive factor, the robustness and disturbance rejection of the controlled system are en- hanced. Numerical simulation results demonstrate that the proposed FASMC controller works well for suppression of ferroresonance over voltage.展开更多
In order to study the influence of gas-liquid two-phase flow on the performance and internal flow field of a centrifugal pump,the steady three-dimensional flow with different gas volume fractions was simulated by appl...In order to study the influence of gas-liquid two-phase flow on the performance and internal flow field of a centrifugal pump,the steady three-dimensional flow with different gas volume fractions was simulated by applying the Reynolds-average N-S equation and mixture gas-liquid two-phase flow model,and the compressibility of gas was taken into consideration in the simulation. Then the centrifugal pump characteristic and the gas distribution law in different gas volume fractions were analyzed. The computational results show that gas volume fraction has a certain influence on the performance of the centrifugal pump,and the efficiency and head of the pump are on the decline with the increase of it.Static pressure in the impeller increases in the radial direction,but the pressure gradient in the flow direction is different under the different gas volume fractions. The gas volume is distributed mainly in the ipsilateral direction of impeller back shroud in the flow channel of the volute. On the suction side of the blade inlet there is an obvious low-pressure area,which causes bubbles agglutination and higher gas volume fraction. With the gas entering passage flow,gas volume fraction in the suction decreases and the pressure surface rises gradually. Higher gas volume fraction causes air blocking phenomenon in the flow passage and the discharge capacity reduces. The increase of gas volume makes the turbulent motion within the impeller more and more intense,which leads to more and more energy loss.展开更多
Climate change has led to increased frequency, intensity,and duration of extreme weather events, e.g., intense rainfall,heat waves, droughts, and storm surges, worsened byrapid population growth and urbanization at th...Climate change has led to increased frequency, intensity,and duration of extreme weather events, e.g., intense rainfall,heat waves, droughts, and storm surges, worsened byrapid population growth and urbanization at the global scale.Evidence can be found in the exceptional number of unprecedentedweather extremes and the resulting naturalhazards, especially flooding, as seen in the last few decades.For example, the UK has experienced numerous storms andsevere floods in the last decade, particularly in 2007, 2012,and 2015, with 2012 being recorded as the second wettest year in the UK and the wettest ever in England. These events have resulted in lives lost and tremendous economic damage. The UK is not alone. Similarly unusual weather events have been reported across the globe. In China,different types of flooding threaten 1/10 of the country's total area, millions of hectares of farmland, and over 100 large cities, making it one of the most vulnerable countries to flooding.展开更多
Combined with a proposed homogeneous earth dam in deep cladding foundation, Duncan E-B model is applied to simulate dam-filled material, apply to three-dimensional nonlinear finite element method, attain the stress-st...Combined with a proposed homogeneous earth dam in deep cladding foundation, Duncan E-B model is applied to simulate dam-filled material, apply to three-dimensional nonlinear finite element method, attain the stress-strain distribution and alteration in concrete cutoff wall in completion and water storage periods, analysis the stress state in the contact element between concrete cutoff wall and cladding foundation, provide the corresponding measures. The calculation results show that the design of concrete cutoff wall and homogeneous earth dam is reasonable.展开更多
Film hole irrigation has been widely adopted as an effective water-saving irrigation technology in the arid and semiarid areas of China.To investigate the effects of initial soil moisture content(θ0)on soil water and...Film hole irrigation has been widely adopted as an effective water-saving irrigation technology in the arid and semiarid areas of China.To investigate the effects of initial soil moisture content(θ0)on soil water and nitrogen transport characteristics under muddy water film hole infiltration,the laboratory experiments were conducted with muddy water film hole infiltration,using five initial soil moisture content treatments.The models for describing the relationships between the cumulative infiltration(I(t))and infiltration duration(t);the relationship among the horizontal and vertical migration distances of the wetting front(Fx,Fz),θ0 and t,were established.The results showed that the initial soil moisture content had a significant effect on I(t),Fx,Fz and moisture content distribution in the wetted body.The change of I(t)over t conformed to Kostiakov model.With the increase ofθ0,the infiltration coefficient(K)gradually decreased.NO-3-N was mainly distributed in the range of the wetting radius of 15 cm,while NH+4-N was mainly distributed in the range of the wetting radius of 8 cm.This study can provide a theoretical basis and technical support for film hole irrigation.展开更多
Because of the uncertainty and randomness of wind speed, wind power has characteristics such as nonlinearity and multiple frequencies. Accurate prediction of wind power is one effective means of improving wind power i...Because of the uncertainty and randomness of wind speed, wind power has characteristics such as nonlinearity and multiple frequencies. Accurate prediction of wind power is one effective means of improving wind power integration. Because the traditional single model cannot fully characterize the fluctuating characteristics of wind power, scholars have attempted to build other prediction models based on empirical mode decomposition(EMD) or ensemble empirical mode decomposition(EEMD) to tackle this problem. However, the prediction accuracy of these models is affected by modal aliasing and illusive components. Aimed at these defects, this paper proposes a multi-frequency combination prediction model based on variational mode decomposition(VMD). We use a back propagation neural network(BPNN),autoregressive moving average(ARMA)model, and least square support vector machine(LS-SVM) to predict high, intermediate,and low frequency components,respectively. Based on the predicted values of each component, the BPNN is applied to combine them into a final wind power prediction value.Finally,the prediction performance of the single prediction models(ARMA,BPNN and LS-SVM)and the decomposition prediction models(EMD and EEMD) are used to compare with the proposed VMD model according to the evaluation indices such as average absolute error, mean square error,and root mean square error to validate its feasibility and accuracy. The results show that the prediction accuracy of the proposed VMD model is higher.展开更多
Interval prediction of wind power,which features the upper and lower limits of wind power at a given confidence level,plays a significant role in accurate prediction and stability of the power grid integrated with win...Interval prediction of wind power,which features the upper and lower limits of wind power at a given confidence level,plays a significant role in accurate prediction and stability of the power grid integrated with wind power.However,the conventional methods of interval prediction are commonly based on a hypothetic probability distribution function,which neglects the correlations among various variables,leading to the decrease of prediction accuracy.Therefore,we improve the multi-objective interval prediction based on the conditional copula function,through which we can fully utilize the correlations among variables to improve prediction accuracy without an assumed probability distribution function.We use the multi-objective optimization method of nondominated sorting genetic algorithm-II(NSGA-II)to obtain the optimal solution set.The particular best solution is weighted by the prediction interval average width(PIAW)and prediction interval coverage probability(PICP)to pick the optimized solution in practical examples.Finally,we apply the proposed method to three wind power plants in different cities in China as examples forvalidation and obtain higher prediction accuracy compared with other methods,i.e.,relevance vector machine(RVM),artificial neural network(ANN),and particle swarm optimization kernel extreme learning machine(PSO-KELM).These results demonstrate the superiority and practicability of this method in interval prediction of wind power.展开更多
The comprehensive performance of the marine current turbine is an important issue in the ocean energy development. Its key is the performance of the hydrofoil, which is used to form the turbine blade. A multi-point op...The comprehensive performance of the marine current turbine is an important issue in the ocean energy development. Its key is the performance of the hydrofoil, which is used to form the turbine blade. A multi-point optimization method of the hydrofoil is proposed in this paper. In this method, the Bezier curve is used to parameterize the hydrofoil. The geometrical parameters are used as variables while the lift-drag ratio and the cavitation performance of the hydrofoil are used as the objective functions. The NSGA-II algorithm is chosen as the optimization algorithm. In order to resolve the difficulty of this high-dimensional multi-objective optimi- zation problem, the conception of the distance metric in the metric space is introduced to unify the lift-drag ratio and the cavitation performance under different working conditions. And then, the above optimization method is applied in the NACA63-815 hydro- foil's optimal design under three typical conditions. Finally, the results from the performance comparison of the original and optimi- zed hydrofoils obtained by using the CFD simulation are analyzed in detail. It is indicated that the optimized hydrofoils enjoy a better hydrodynamic performance than the original ones under the three conditions. The feasibility and the theoretical validity of this optimization method are confirmed by the results.展开更多
The tip leakage flow formed by the tip clearance of a semi-open centrifugal pump adversely affects the energy performance and the energy waste. A T-shaped blade is proposed to be used to improve the energy characteris...The tip leakage flow formed by the tip clearance of a semi-open centrifugal pump adversely affects the energy performance and the energy waste. A T-shaped blade is proposed to be used to improve the energy characteristics. The internal flow field is simulated via the shear stress transport turbulence model to analyze the influence of the T-shaped blade on the performance of a centrifugal pump. It is shown that with the T-shaped blade, the hydraulic loss can be reduced, the Euler head can be increased, and the external characteristics can be improved. The maximum head and efficiency improvements are 3% and 1.6%, respectively. The relative flow angle near the tip clearance of the T-shaped blade decreases, and the strength of the backflow region is remarkably weakened. The area of the high entropy production region decreases, and the trend of the upstream diffusion is restrained under the design condition. The T-shaped blade can help to inhibit the diffusion of the high entropy production region to the hub under the low flow rate condition, but the entropy production and the mixing losses at the tip clearance are slightly increased. This research provides a new method for improving the energy performance of the semi-open centrifugal pump.展开更多
文摘The combined surface and groundwater allocation practice by wells and canals had contributed to the safety of groundwater environment and agriculture sustainable production. The typical area in the People's Victory Canal irrigation district was taken as a case, drawing together the irrigation district agriculture water consumption and precipitation from 1954 to 2014 in the People's Victory Canal irrigation district, ratios of surface to groundwater irrigation amount, dynamic of groundwater depth and hydrochemical characteristic of groundwater from 2008 to 2014 in the research area, the relationship between groundwater depth and ratio of surface to groundwater irrigation amount was analyzed, in order to ascertain the influence of precipitation on ratios of surface to groundwater irrigation amount and its effect on soil and groundwater environment. The results indicated that positive correlation between the ratios of surface to groundwater irrigation amount and annual precipitation was appeared, affected by climate change, average irrigation amount from surface in the recent 5 years was 2.90 x 108 cubic meters, accounted for 75.52% of total irrigation amount, on the other hand, decreasing tendency of precipitation was obvious, and groundwater depth dynamic in upstream of the branch canals was more dramatic than downstream because of surface water irrigation infiltration, under the unified condition of water use efficiency, ratio of surface to groundwater irrigation amount was negative correlation with area of the groundwater depth beyond 11 m, meanwhile, groundwater depth demonstrated negative correlation with the ratio of surface to groundwater irrigation amount, moreover, alkaline trend of groundwater hydrochemistry during the normal season in the research area was obvious because of phreatic evaporation and the agricultural irrigation from wells, along with irrigation from surface inflow of Yellow River, quality of groundwater hydrochemistry during the dry season was ameliorative greatly. Consequently, it was very important to the agriculture sustainable production that well-canal combined irrigation patterns alleviated extremely alkaline trend of the groundwater hydrochemistry and played a positive role of root layer soil salinity leaching.
基金the National Natural Science Foundation of China(Grant No.52079105 and 51779205)the Doctoral Dissertations Innovation Fund of Xi’an University of Technology(Grant No.310-252072107).
文摘Muddy water irrigation,an effective water-saving irrigation method,has been widely used in the Yellow River Basin in China.To investigate the effect of sand content on water infiltration and dense layer formation under one-dimensional vertical infiltration of muddy water,muddy water infiltration experiments were performed in the laboratory,and five sand contents of muddy water(S=0%,3%,6%,9%,and 12%)were used.Models were established to describe the relationship between the cumulative infiltration amount[I(t)]and the infiltration duration(t);the relationship among the migration distance of the wetting front(Z),S,and t;the thickness of the sedimentary layer[H(t)];and the relationship between S and t.The results revealed that I(t)and Z decreased significantly with the increase of sand contents,while H(t)increased significantly with the increase of sand contents.I(t)and Z were in the range of 7 cm and 20 cm for each treatment,respectively.The variation in I(t)with t fitted Kostiakov and Philip models,and the coefficients of determination were all greater than 0.99.With the increase in S,the infiltration coefficient gradually decreased,the infiltration index gradually increased,and the sorptivity gradually decreased.The particle composition of the sedimentary layer was similar to that of the argillaceous sediment,and the content of particles with a size of less than 2 mm in the sedimentary layer was lower than that of the argillaceous sediment.Compared with the original soil,the content of particles with a size of less than 0.05 mm and physical clay particles(diameter less than 0.01 mm)in the soil with an infiltration depth of 0-2 cm increased.The retention layer was from the topsoil to the infiltration depth of approximately 2 cm.This study can provide a scientific basis for further research on soil infiltration mechanisms under muddy water.
基金Supported by the National Natural Science Foundation of China (No.90401009)Research Fund for Excellent Doctoral Thesis of Xi'an University of Technology (No.602-210805)
文摘The transport of La(III) through a dispersion supported liquid membrane with polyvinylidene fluoride membrane as the liquid membrane support and dispersion solution including HCl solution as the stripping solution and 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester (PC-88A) in kerosene as the membrane solution, was studied. As a result, the optimum transport conditions of La(Ⅲ) were obtained as that concentration of HCl solution was 4.0 mol/L, concentration of PC-88A 0.16 mol/L, and volume ratio of membrane to stripping solution 30:30 in the dispersion phase, and pH value 4.0 in the feed phase. Ionic strength had no obvious effect on the transport of La(Ⅲ). Under the optimum conditions, when initial concentration of La(Ⅲ) was 0.8×10-4 mol/L, the transport rate was up to 96.3% during the transport time of 125 min. The kinetic equation was developed based on the law of mass diffusion and theory of interface chemistry. The diffusion coefficient of La(Ⅲ) in the membrane and the thickness of diffusion layer between feed and membrane phases were obtained as 3.20×10-7 m2/s and 3.22×10-5 m, respectively. The calculated results were in good agreement with experimental results.
基金supported by the National Natural Science Foundation of China(Grant No.51579207)the Open Foundation of State Key Laboratory Base of Eco-Hydraulic Engineering in Arid Area(Grant No.2016ZZKT-8)the Key Projects of Natural Science Basic Research Program of Shaanxi Province(Grant No.2018JZ5010)
文摘Extracting implicit anomaly information through deformation monitoring data mining is highly significant to determining dam safety status.As an intelligent singular value diagnostic method for concrete dam deformation monitoring, shallow neural network models result in local optima and overfitting, and require manual feature extraction.To obtain an intelligent singular value diagnosis model that can be used for dam safety monitoring, a convolutional neural network (CNN) model that has advantages of deep learning (DL), such as automatic feature extraction, good model fitting, and strong generalizability, was trained in this study.An engineering example shows that the predicted result of the intelligent singular value diagnostic method based on CNN is highly compatible with the confusion matrix, with a precision of 92.41%, receiver operating characteristic (ROC) coordinates of (0.03, 0.97), an area-under-curve (AUC) value of 0.99, and an F1-score of 0.91.Moreover, the performance of the CNN model is better than those of models based on decision tree (DT) and k-nearest neighbor (KNN) methods.Therefore, the intelligent singular value diagnostic method based on CNN is simple to operate, highly intelligent, and highly reliable, and it has a high potential for application in engineering.
基金supported by the National Natural Science Foundation of China(Grant No.19672016)the National Key R&D Program of China(Grant No.2016YFC0402704)+1 种基金the State Key Program of the National Natural Science Foundation of China(Grant No.41330858)the UK Natural Environment Research Council(NERC)(Grant No.NE/K008781/1)
文摘A dynamic uniform Cartesian grid system was developed in order to reduce the computational time in inundation simulation using a Godunov-type finite volume scheme. The reduction is achieved by excluding redundant dry cells, which cannot be effectively avoided with a conventional Cartesian uniform grid system, as the wet area is unknown before computation. The new grid system expands dynamically with wetting, through addition of new cells according to moving wet-dry fronts. The new grid system is straightforward in implementation. Its application in a field-scale flood simulation shows that the new grid system is able to produce the same results as the conventional grid, but the computational efficiency is fairly improved.
文摘Aiming at the low accuracy problem of power system short-term load forecasting by traditional methods, a back-propagation artificial neural network (BP-ANN) based method for short-term load forecasting is presented in this paper. The forecast points are related to prophase adjacent data as well as the periodical long-term historical load data. Then the short-term load forecasting model of Shanxi Power Grid (China) based on BP-ANN method and correlation analysis is established. The simulation model matches well with practical power system load, indicating the BP-ANN method is simple and with higher precision and practicality.
基金General Program of National Natural Science Foundation of China(Grant No.51479168)The Natural Science Foundation Project of Liaoning Provincial Department of Education,China(Grant No.JJL201915404).
文摘The aim of this study is to improve the bond performance of basalt fiber reinforced polymer(BFRP)bars and recycled aggregate concrete(RAC)after being exposed to high temperatures.The bond behavior(failure modes,bond strength,bond stress-slip curves)between BFRP bars and hybrid fiber recycled aggregate concrete(HFRAC)after being exposed to temperatures ranging from 20℃up to 500℃was studied by using pull-out tests.The effect of high temperatures on mechanical properties of concrete(compressive strength,splitting tensile strength)and tensile strength of BFRP bars was also investigated.The bond strength decreased as the temperature increased and the drop of bond strength between RAC and BFRP bar was larger than that between HFRAC and BFRP bar.As the temperature rises,the key factor affecting the bond strength was gradually transformed from concrete strength to BFRP bar strength.The relationship between bond stress and slip in the dimensionless bond stress-slip ascending section was established,which was in good agreement with the experimental results.
基金supported by the National Natural Science Foundation of China (90401009)Research Fund for Excellent Doctoral Thesis of Xi'an University of Technology (602-210805)
文摘The transport of Dy(III) through a dispersion supported liquid membrane (DSLM) consisting of polyvinylidene fluoride membrane (PVDF) as the liquid membrane support and dispersion solution including HCI solution as the stripping solution and 2-ethyl hexyl phosphonic acid-mono-2-ethyl hexyl ester (PC-88A) dissolved in kerosene as the membrane solution, was studied. The effects of pH value, initial concentration of Dy(III) and different ionic strength in the feed phase, volume ratio of membrane solution and stripping solution, concentration of HCl solution, concentration of carrier, different stripping agents in the dispersion phase on transport of Dy(III) were also investigated, respectively. As a result, when the concentration of HCI solution was 4.0 mol/L, concentration of PC-88A was 0.10 mol/L, and volume ratio of membrane solution and stripping solution was 40:20 in the dispersion phase, and pH value was 5.0 in the feed phase, the transport effect of Dy(III) was the best. Ionic strength had no obvious effect on transport of Dy(III). Under the optimum condition studied, when initial concentration of Dy(III) was 0.8×10^-4 mol/L, the transport rate of Dy(III) was up to 96.2% during the transport time of 95 rain. The kinetic equation was developed in terms of the law of mass diffusion and the theory of interface chemistry. The diffusion coefficient of Dy(III) in the membrane and the thickness of diffusion layer between feed phase and membrane phase were obtained and the values were 1.99×10^-7 m^2/s and 15.97 μm, respectively. The results were in good agreement with experimental results.
基金Supported by Special Public Welfare Industry Research Project of the Ministry of Land and Resources(201411008)
文摘In order to ease the contradiction between people and land and ensure the needs of construction land and farmland,this paper analyzes the demand and regional land development background,and points out the problems of the development of the land in China: late start of land development and utilization practices; declining back-up resources and sharply increasing costs; new resources and environmental problems brought about by development and utilization of land in some areas. This paper presents a new opportunity and strategy for land use transition: giving full play to the agricultural and geographical advantages of farming-pastoral area; carrying out water-saving technologies and intensive use of agricultural land in water-deficient areas,in order to achieve reasonable and efficient development and utilization.
文摘We have performed numerical simulations of localized travelling-wave convection in a binary fluid mixture heated from below in a long rectangular container. Calculations are carried out in a vertical cross section of the rolls perpendic- ular to their axes. For a negative enough separation ratio, two types of quite different confined states were documented by applying different control processes. One branch of localized travelling waves survives only in a very narrow band within subcritical regime, while another branch straddles the onset of convection existing both in subcritical and super- critical regions. We elucidated that concentration field and its current are key to understand how confined convection is sustained when conductive state is absolutely unstable, The weak structures in the conducting region are demonstrated too.
基金Supported by "863" Program of P. R. China(2002AA2Z4291)
文摘Scientific forecasting water yield of mine is of great significance to the safety production of mine and the colligated using of water resources. The paper established the forecasting model for water yield of mine, combining neural network with the partial least square method. Dealt with independent variables by the partial least square method, it can not only solve the relationship between independent variables but also reduce the input dimensions in neural network model, and then use the neural network which can solve the non-linear problem better. The result of an example shows that the prediction has higher precision in forecasting and fitting.
基金supported by the National Natural Science Foundation of China(Grant No.51507134)the Science Fund from the Education Department of Shaanxi Province,China(Grant No.15JK1537)
文摘Ferroresonance is a complex nonlinear electrotechnical phenomenon, which can result in thermal and electrical stresses on the electric power system equipments due to the over voltages and over currents it generates. The prediction or determination of ferroresonance depends mainly on the accuracy of the model used. Fractional-order models are more accurate than the integer-order models. In this paper, a fractional-order ferroresonance model is proposed. The influence of the order on the dynamic behaviors of this fractional-order system under different parameters n and F is investigated. Compared with the integral-order ferroresonance system, small change of the order not only affects the dynamic behavior of the system, but also significantly affects the harmonic components of the system. Then the fractional-order ferroresonance system is implemented by nonlinear circuit emulator. Finally, a fractional-order adaptive sliding mode control (FASMC) method is used to eliminate the abnormal operation state of power system. Since the introduction of the fractional-order sliding mode surface and the adaptive factor, the robustness and disturbance rejection of the controlled system are en- hanced. Numerical simulation results demonstrate that the proposed FASMC controller works well for suppression of ferroresonance over voltage.
基金The National Natural Science Foundation of China(51679196,51879216,51339005)
文摘In order to study the influence of gas-liquid two-phase flow on the performance and internal flow field of a centrifugal pump,the steady three-dimensional flow with different gas volume fractions was simulated by applying the Reynolds-average N-S equation and mixture gas-liquid two-phase flow model,and the compressibility of gas was taken into consideration in the simulation. Then the centrifugal pump characteristic and the gas distribution law in different gas volume fractions were analyzed. The computational results show that gas volume fraction has a certain influence on the performance of the centrifugal pump,and the efficiency and head of the pump are on the decline with the increase of it.Static pressure in the impeller increases in the radial direction,but the pressure gradient in the flow direction is different under the different gas volume fractions. The gas volume is distributed mainly in the ipsilateral direction of impeller back shroud in the flow channel of the volute. On the suction side of the blade inlet there is an obvious low-pressure area,which causes bubbles agglutination and higher gas volume fraction. With the gas entering passage flow,gas volume fraction in the suction decreases and the pressure surface rises gradually. Higher gas volume fraction causes air blocking phenomenon in the flow passage and the discharge capacity reduces. The increase of gas volume makes the turbulent motion within the impeller more and more intense,which leads to more and more energy loss.
文摘Climate change has led to increased frequency, intensity,and duration of extreme weather events, e.g., intense rainfall,heat waves, droughts, and storm surges, worsened byrapid population growth and urbanization at the global scale.Evidence can be found in the exceptional number of unprecedentedweather extremes and the resulting naturalhazards, especially flooding, as seen in the last few decades.For example, the UK has experienced numerous storms andsevere floods in the last decade, particularly in 2007, 2012,and 2015, with 2012 being recorded as the second wettest year in the UK and the wettest ever in England. These events have resulted in lives lost and tremendous economic damage. The UK is not alone. Similarly unusual weather events have been reported across the globe. In China,different types of flooding threaten 1/10 of the country's total area, millions of hectares of farmland, and over 100 large cities, making it one of the most vulnerable countries to flooding.
文摘Combined with a proposed homogeneous earth dam in deep cladding foundation, Duncan E-B model is applied to simulate dam-filled material, apply to three-dimensional nonlinear finite element method, attain the stress-strain distribution and alteration in concrete cutoff wall in completion and water storage periods, analysis the stress state in the contact element between concrete cutoff wall and cladding foundation, provide the corresponding measures. The calculation results show that the design of concrete cutoff wall and homogeneous earth dam is reasonable.
基金This study was financially supported by the National Key Research and Development Program of China(Grant No.2016YFC0400204)the National Natural Science Foundation of China(Grant No.52079105,51779205 and 51479161)+1 种基金and the Public welfare industry research special project(Grant No.201203003)The authors acknowledge the anonymous reviewers and the editor for their valuable comments and suggestions.
文摘Film hole irrigation has been widely adopted as an effective water-saving irrigation technology in the arid and semiarid areas of China.To investigate the effects of initial soil moisture content(θ0)on soil water and nitrogen transport characteristics under muddy water film hole infiltration,the laboratory experiments were conducted with muddy water film hole infiltration,using five initial soil moisture content treatments.The models for describing the relationships between the cumulative infiltration(I(t))and infiltration duration(t);the relationship among the horizontal and vertical migration distances of the wetting front(Fx,Fz),θ0 and t,were established.The results showed that the initial soil moisture content had a significant effect on I(t),Fx,Fz and moisture content distribution in the wetted body.The change of I(t)over t conformed to Kostiakov model.With the increase ofθ0,the infiltration coefficient(K)gradually decreased.NO-3-N was mainly distributed in the range of the wetting radius of 15 cm,while NH+4-N was mainly distributed in the range of the wetting radius of 8 cm.This study can provide a theoretical basis and technical support for film hole irrigation.
基金supported by the National Natural Science Foundation of China (No. 51507141)the National Key Research and Development Program of China (No. 2016YFC0401409)the Shaanxi provincial education office fund (No. 17JK0547)
文摘Because of the uncertainty and randomness of wind speed, wind power has characteristics such as nonlinearity and multiple frequencies. Accurate prediction of wind power is one effective means of improving wind power integration. Because the traditional single model cannot fully characterize the fluctuating characteristics of wind power, scholars have attempted to build other prediction models based on empirical mode decomposition(EMD) or ensemble empirical mode decomposition(EEMD) to tackle this problem. However, the prediction accuracy of these models is affected by modal aliasing and illusive components. Aimed at these defects, this paper proposes a multi-frequency combination prediction model based on variational mode decomposition(VMD). We use a back propagation neural network(BPNN),autoregressive moving average(ARMA)model, and least square support vector machine(LS-SVM) to predict high, intermediate,and low frequency components,respectively. Based on the predicted values of each component, the BPNN is applied to combine them into a final wind power prediction value.Finally,the prediction performance of the single prediction models(ARMA,BPNN and LS-SVM)and the decomposition prediction models(EMD and EEMD) are used to compare with the proposed VMD model according to the evaluation indices such as average absolute error, mean square error,and root mean square error to validate its feasibility and accuracy. The results show that the prediction accuracy of the proposed VMD model is higher.
基金supported by the National Natural Science Foundation of China(No.51507141)Key research and development plan of Shaanxi Province(No.2018ZDCXL-GY-10-04)+1 种基金the National Key Research and Development Program of China(No.2016YFC0401409)the Shaanxi provincial education office fund(No.17JK0547).
文摘Interval prediction of wind power,which features the upper and lower limits of wind power at a given confidence level,plays a significant role in accurate prediction and stability of the power grid integrated with wind power.However,the conventional methods of interval prediction are commonly based on a hypothetic probability distribution function,which neglects the correlations among various variables,leading to the decrease of prediction accuracy.Therefore,we improve the multi-objective interval prediction based on the conditional copula function,through which we can fully utilize the correlations among variables to improve prediction accuracy without an assumed probability distribution function.We use the multi-objective optimization method of nondominated sorting genetic algorithm-II(NSGA-II)to obtain the optimal solution set.The particular best solution is weighted by the prediction interval average width(PIAW)and prediction interval coverage probability(PICP)to pick the optimized solution in practical examples.Finally,we apply the proposed method to three wind power plants in different cities in China as examples forvalidation and obtain higher prediction accuracy compared with other methods,i.e.,relevance vector machine(RVM),artificial neural network(ANN),and particle swarm optimization kernel extreme learning machine(PSO-KELM).These results demonstrate the superiority and practicability of this method in interval prediction of wind power.
基金supported by the Key Program of National Natural Science Foundation of China(Grant No.51339005)the National Natural Science Foundation of China(Grant Nos.51379174,51279160)the Doctoral Fund of Ministry of Education of China(Grant No.20126118130002)
文摘The comprehensive performance of the marine current turbine is an important issue in the ocean energy development. Its key is the performance of the hydrofoil, which is used to form the turbine blade. A multi-point optimization method of the hydrofoil is proposed in this paper. In this method, the Bezier curve is used to parameterize the hydrofoil. The geometrical parameters are used as variables while the lift-drag ratio and the cavitation performance of the hydrofoil are used as the objective functions. The NSGA-II algorithm is chosen as the optimization algorithm. In order to resolve the difficulty of this high-dimensional multi-objective optimi- zation problem, the conception of the distance metric in the metric space is introduced to unify the lift-drag ratio and the cavitation performance under different working conditions. And then, the above optimization method is applied in the NACA63-815 hydro- foil's optimal design under three typical conditions. Finally, the results from the performance comparison of the original and optimi- zed hydrofoils obtained by using the CFD simulation are analyzed in detail. It is indicated that the optimized hydrofoils enjoy a better hydrodynamic performance than the original ones under the three conditions. The feasibility and the theoretical validity of this optimization method are confirmed by the results.
基金Projects supported by the National Natural Science Foundation of China (Grant Nos.51879216, 52079108, 51679196 and 51839010).
文摘The tip leakage flow formed by the tip clearance of a semi-open centrifugal pump adversely affects the energy performance and the energy waste. A T-shaped blade is proposed to be used to improve the energy characteristics. The internal flow field is simulated via the shear stress transport turbulence model to analyze the influence of the T-shaped blade on the performance of a centrifugal pump. It is shown that with the T-shaped blade, the hydraulic loss can be reduced, the Euler head can be increased, and the external characteristics can be improved. The maximum head and efficiency improvements are 3% and 1.6%, respectively. The relative flow angle near the tip clearance of the T-shaped blade decreases, and the strength of the backflow region is remarkably weakened. The area of the high entropy production region decreases, and the trend of the upstream diffusion is restrained under the design condition. The T-shaped blade can help to inhibit the diffusion of the high entropy production region to the hub under the low flow rate condition, but the entropy production and the mixing losses at the tip clearance are slightly increased. This research provides a new method for improving the energy performance of the semi-open centrifugal pump.