期刊文献+
共找到342篇文章
< 1 2 18 >
每页显示 20 50 100
Erratum to “Contract Mechanism of Water Environment Regulation for Small and Medium Sized Enterprises Based on Optimal Control Theory” [Journal of Water Resource and Protection Vol.16 No.7 2024]
1
作者 Shuang Zhao Hongbin Gu +2 位作者 Lianfang Xue Dongsheng Wang Bin Huang 《Journal of Water Resource and Protection》 CAS 2024年第8期584-584,共1页
The original online version of this article (Zhao, S., Gu, H.B., Xue, L.F., Wang, D.S. and Huang, B. (2024) Contract Mechanism of Water Environment Regu-lation for Small and Medium Sized Enterprises Based on Optimal C... The original online version of this article (Zhao, S., Gu, H.B., Xue, L.F., Wang, D.S. and Huang, B. (2024) Contract Mechanism of Water Environment Regu-lation for Small and Medium Sized Enterprises Based on Optimal Control Theory. Journal of Water Resource and Protection, 16, 538-556. https://doi.org/10.4236/jwarp.2024.167030) unfortunately contains a mis-take. The second institution is “China Renewable Energy Engineering Insti-tute, Beijing, China”, not “China Renewable Engineering Institute, Beijing, China”. 展开更多
关键词 Erratum
下载PDF
Contract Mechanism of Water Environment Regulation for Small and Medium Sized Enterprises Based on Optimal Control Theory
2
作者 Shuang Zhao Hongbin Gu +2 位作者 Lianfang Xue Dongsheng Wang Bin Huang 《Journal of Water Resource and Protection》 CAS 2024年第7期538-556,共20页
The small and scattered enterprise pattern in the county economy has formed numerous sporadic pollution sources, hindering the centralized treatment of the water environment, increasing the cost and difficulty of trea... The small and scattered enterprise pattern in the county economy has formed numerous sporadic pollution sources, hindering the centralized treatment of the water environment, increasing the cost and difficulty of treatment. How enterprises can make reasonable decisions on their water environment behavior based on the external environment and their own factors is of great significance for scientifically and effectively designing water environment regulation mechanisms. Based on optimal control theory, this study investigates the design of contractual mechanisms for water environmental regulation for small and medium-sized enterprises. The enterprise is regarded as an independent economic entity that can adopt optimal control strategies to maximize its own interests. Based on the participation of multiple subjects including the government, enterprises, and the public, an optimal control strategy model for enterprises under contractual water environmental regulation is constructed using optimal control theory, and a method for calculating the amount of unit pollutant penalties is derived. The water pollutant treatment cost data of a paper company is selected to conduct empirical numerical analysis on the model. The results show that the increase in the probability of government regulation and public participation, as well as the decrease in local government protection for enterprises, can achieve the same regulatory effect while reducing the number of administrative penalties per unit. Finally, the implementation process of contractual water environmental regulation for small and medium-sized enterprises is designed. 展开更多
关键词 Optimal Control Theory Small and Medium-Sized Enterprises Water Environment Regulation Contract Mechanism
下载PDF
Intermittent disturbance mechanical behavior and fractional deterioration mechanical model of rock under complex true triaxial stress paths 被引量:3
3
作者 Zhi Zheng Hongyu Xu +3 位作者 Kai Zhang Guangliang Feng Qiang Zhang Yufei Zhao 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第1期117-136,共20页
Mechanical excavation,blasting,adjacent rockburst and fracture slip that occur during mining excavation impose dynamic loads on the rock mass,leading to further fracture of damaged surrounding rock in three-dimensiona... Mechanical excavation,blasting,adjacent rockburst and fracture slip that occur during mining excavation impose dynamic loads on the rock mass,leading to further fracture of damaged surrounding rock in three-dimensional high-stress and even causing disasters.Therefore,a novel complex true triaxial static-dynamic combined loading method reflecting underground excavation damage and then frequent intermittent disturbance failure is proposed.True triaxial static compression and intermittent disturbance tests are carried out on monzogabbro.The effects of intermediate principal stress and amplitude on the strength characteristics,deformation characteristics,failure characteristics,and precursors of monzogabbro are analyzed,intermediate principal stress and amplitude increase monzogabbro strength and tensile fracture mechanism.Rapid increases in microseismic parameters during rock loading can be precursors for intermittent rock disturbance.Based on the experimental result,the new damage fractional elements and method with considering crack initiation stress and crack unstable stress as initiation and acceleration condition of intermittent disturbance irreversible deformation are proposed.A novel three-dimensional disturbance fractional deterioration model considering the intermediate principal stress effect and intermittent disturbance damage effect is established,and the model predicted results align well with the experimental results.The sensitivity of stress states and model parameters is further explored,and the intermittent disturbance behaviors at different f are predicted.This study provides valuable theoretical bases for the stability analysis of deep mining engineering under dynamic loads. 展开更多
关键词 True triaxial static and disturbance test Mechanical properties Failure mechanism and precursor Intermittent disturbance effect Fractional mechanical model
下载PDF
Effects of combined drip irrigation and sub-surface pipe drainage on water and salt transport of saline-alkali soil in Xinjiang, China 被引量:14
4
作者 HENG Tong LIAO Renkuan +3 位作者 WANG Zhenhua WU Wenyong LI Wenhao ZHANG Jinzhu 《Journal of Arid Land》 SCIE CSCD 2018年第6期932-945,共14页
Developing effective irrigation and drainage strategies to improve the quality of saline-alkali soil is vital for enhancing agricultural production and increasing economic returns. In this study, we explored how irrig... Developing effective irrigation and drainage strategies to improve the quality of saline-alkali soil is vital for enhancing agricultural production and increasing economic returns. In this study, we explored how irrigation and drainage modes (flood irrigation, drip irrigation, and sub-surface pipe drainage under drip irrigation) improve the saline-alkali soil in Xinjiang, China. We aimed to study the transport characteristics of soil water and salt under different irrigation and drainage modes, and analyze the effects of the combination of irrigation and drainage on soil salt leaching, as well as its impacts on the growth of oil sunflower. Our results show that sub-surface pipe drainage under drip irrigation significantly reduced the soil salt content and soil water content at the 0–200 cm soil depth. Under sub-surface pipe drainage combined with drip irrigation, the mean soil salt content was reduced to below 10 g/kg after the second irrigation, and the soil salt content decreased as sub-surface pipe distance decreased. The mean soil salt content of flood irrigation exceeded 25 g/kg, and the mean soil desalination efficiency was 3.28%, which was lower than that of drip irrigation. The mean soil desalination rate under drip irrigation and sub-surface pipe drainage under drip irrigation was 19.30% and 58.12%, respectively. After sub-surface drainage regulation under drip irrigation, the germination percentage of oil sunflower seedlings was increased to more than 50%, which further confirmed that combined drip irrigation and sub-surface pipe drainage is very effective in improving the quality of saline-alkali soil and increasing the productivity of agricultural crops. 展开更多
关键词 saline-alkali soil drip irrigation flood irrigation sub-surface pipe drainage soil desalination salt leaching arid area
下载PDF
Effect of water-sediment regulation and its impact on coastline and suspended sediment concentration in Yellow River Estuary 被引量:7
5
作者 Hai-bo Yang En-chong Li +1 位作者 Yong Zhao Qiu-hua Liang 《Water Science and Engineering》 EI CAS CSCD 2017年第4期311-319,共9页
Implementation of the water-sediment regulation(WSR) scheme, mainly focused on solving the sedimentation problems of reservoirs and the lower reaches of the Yellow River, has inevitably influenced the sediment distrib... Implementation of the water-sediment regulation(WSR) scheme, mainly focused on solving the sedimentation problems of reservoirs and the lower reaches of the Yellow River, has inevitably influenced the sediment distribution and coastal morphology of the Yellow River Estuary.Using coastline delineation and suspended sediment concentration(SSC) retrieval methods, this study investigated water and sediment changes,identified detailed inter-annual and intra-annual variations of the coastline and SSC in the normal period(NP: 1986-2001, before and after the flood season) and WSR period(WSRP: 2002-2013, before and after WSR). The results indicate that(1) the sedimentation in the low reaches of the Yellow River turned into erosion from 2002 onward;(2) the inter-annual coastline changes could be divided into an accretion stage(1986-1996), a slow erosion stage(1996-2002), and a slow accretion stage(2002-2013);(3) an intra-annual coastline extension occurred in the river mouth in most years of the WSRP; and(4) the mean intra-annual accretion area was 0.789 km^2 in the NP and 4.73 km2 in the WSRP,and the mean SSC increased from 238 mg/L to 293 mg/L in the NP and from 192 mg/L to 264 mg/L in the WSRP. 展开更多
关键词 COASTLINE Suspended SEDIMENT concentration Water-sediment REGULATION REMOTE sensing YELLOW River ESTUARY
下载PDF
Coupling analysis of social-economic water consumption and its effects on the arid environments in Xinjiang of China based on the water and ecological footprints 被引量:9
6
作者 ZHANG Pei DENG Mingjiang +5 位作者 LONG Aihua DENG Xiaoya WANG Hao HAI Yang WANG Jie LIU Yundong 《Journal of Arid Land》 SCIE CSCD 2020年第1期73-89,共17页
In arid areas,ecological degradation aroused by over-exploitation of fresh water,expansion of artificial oasis and shrinkage of natural oasis,has drawn attention of many scholars and officials.The water and ecological... In arid areas,ecological degradation aroused by over-exploitation of fresh water,expansion of artificial oasis and shrinkage of natural oasis,has drawn attention of many scholars and officials.The water and ecological footprints can be used to quantitatively evaluate the water consumption of social-economic activities and their influence on the eco-environments.In addition,increase of the water footprint indicates the expansion of artificial oasis,and the influence on the natural oasis could be reflected by the variation of the ecological footprint.This study was conducted to answer a scientific question that what is the quantitative relationship between the expansion of the artificial oasis and the degradation of the natural oasis in the arid environments of Xinjiang,China.Thus,based on the social-economic data,water consumption data and meteorological data during 2001–2015,we calculated the water and ecological footprints to express the human-related pressure exerted on the water resources and arid environments in Xinjiang(including 14 prefectures and cities),and explore the relationship between the water and ecological footprints and its mechanism by using the coupling analysis and Granger causality test.The results show that both the water and ecological footprints of Xinjiang increased significantly during 2001–2015,and the increasing rate of the ecological footprint was much faster than that of the water footprint.The coupling degree between the water and ecological footprints was relatively high at the temporal scale and varied at the spatial scale.Among the 14 prefectures and cities examined in Xinjiang,the greater social-economic development(such as in Karamay and Urumqi)was associated with the lower coupling degree between the two footprints.Increases in the water footprint will cause the ecological footprint to increase,such that a 1-unit increase in the consumption of water resources would lead to 2–3 units of ecological degradation.The quantitative relationship between the increases of the water and ecological footprints,together with the intensities of water consumption both in the natural and artificial oases of Tarim River Basin,have approved the fact that the formation and expansion of 1 unit of the artificial oasis would bring about the degradation of 2 units of the natural oasis.These conclusions not only provide a technical basis for sustainable development in Xinjiang,but also offer a theoretical guide and scientific information that could be used in similar arid areas around the world. 展开更多
关键词 water consumption ecological footprint water footprint Granger causality test natural oasis artificial oasis Tarim River
下载PDF
Impact of transferred water on the hydrochemistry and water quality of surface water and groundwater in Baiyangdian Lake,North China 被引量:8
7
作者 Yong Zhao Jingyan Han +1 位作者 Bing Zhang Jiaguo Gong 《Geoscience Frontiers》 SCIE CAS CSCD 2021年第3期104-112,共9页
The hydrochemical composition of surface water and groundwater is a key parameter for understanding the evolution of water and its quality.In particular,little is known about the impact of transferred water on surface... The hydrochemical composition of surface water and groundwater is a key parameter for understanding the evolution of water and its quality.In particular,little is known about the impact of transferred water on surface water and groundwater.In this study,Baiyangdian Lake was selected as a typical area for extensive groundwater exploration and surface water transfer in the North China Plain.Surface water and groundwater samples were sampled in dry/wet seasons and then analyzed before/after the water transfer,respectively.Generally,surface water and groundwater are extensively hydrologically connected based on hydrochemical evidence.It was found that the hydrochemical composition of the shallow groundwater is affected by the surface water and that the water quality of the deep groundwater is stable.However,inter-aquifer recharge processes from the shallow groundwater to the deep groundwater existed in the anthropogenic region impacted with high nitrate-ion concentrations.Also,the hydrochemical composition of the surface water and groundwater was dominated by rock-weathering and evaporation-precipitation processes.Due to the existence of the deep vadose zone in the alluvial fan,Na^(+)was exchanged into soil matrices during the leakage of the surface water.In addition,the transferred water resulted in surface water with good quality,and it also played as an important recharge source to groundwater.As the most important water resource for irrigation and drinking,deep groundwater should be paid more attention in the alluvial fan with frequent water transfer and extensive groundwater exploration. 展开更多
关键词 Hydrochemical composition Surface water GROUNDWATER Water transfer Baiyangdian Lake
下载PDF
Resource use efficiency, ecological intensification and sustainability of intercropping systems 被引量:6
8
作者 MAO Li-li ZHANG Li-zhen +6 位作者 ZHANG Si-ping Jochem B Evers Wopke van der Werf WANG Jing-jing SUN Hong-quan SU Zhi-cheng Huub Spiertz 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2015年第8期1542-1550,共9页
The rapidly growing demand for food, feed and fuel requires further improvements of land and water management, crop productivity and resource-use efficiencies.Combined field experimentation and crop growth modelling d... The rapidly growing demand for food, feed and fuel requires further improvements of land and water management, crop productivity and resource-use efficiencies.Combined field experimentation and crop growth modelling during the past five decades made a great leap forward in the understanding of factors that determine actual and potential yields of monocrops.The research field of production ecology developed concepts to integrate biological and biophysical processes with the aim to explore crop growth potential in contrasting environments.To understand the potential of more complex systems(multi-cropping and intercropping) we need an agro-ecosystem approach that integrates knowledge derived from various disciplines: agronomy, crop physiology, crop ecology, and environmental sciences(soil, water and climate).Adaptation of cropping systems to climate change and a better tolerance to biotic and abiotic stresses by genetic improvement and by managing diverse cropping systems in a sustainable way will be of key importance in food security.To accelerate sustainable intensification of agricultural production, it is required to develop intercropping systems that are highly productive and stable under conditions with abiotic constraints(water, nutrients and weather).Strategies to achieve sustainable intensification include developing tools to evaluate crop growth potential under more extreme climatic conditions and introducing new crops and cropping systems that are more productive and robust under conditions with abiotic stress.This paper presents some examples of sustainable intensification management of intercropping systems that proved to be tolerant to extreme climate conditions. 展开更多
关键词 abiotic stress farming systems over-yielding resource use efficiency SUSTAINABILITY
下载PDF
Effects of Drip System Uniformity and Irrigation Amount on Water and Salt Distributions in Soil Under Arid Conditions 被引量:4
9
作者 GUAN Hong-jie LI Jiu-sheng LI Yan-feng 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2013年第5期924-939,共16页
The dynamics of water and salt in soil were monitored in the 2010 and 2011 growing seasons of cotton to evaluate the salinity risk of soil under drip irrigation in arid environments for different management practices ... The dynamics of water and salt in soil were monitored in the 2010 and 2011 growing seasons of cotton to evaluate the salinity risk of soil under drip irrigation in arid environments for different management practices of drip system uniformity and irrigation amount. In the experiments, three Christiansen uniformity coefficients (CU) of approximately 65, 80, and 95% (referred to as low, medium, and high uniformity, respectively) and three irrigation amounts of 50, 75, and 100% of full irrigation were used. The distribution of the soil water content and bulk electrical conductivity (ECb) was monitored continuously with approximately equally spaced frequency domain reflectometry (FDR) sensors located along a dripline. Gravimetric samples of soil were collected regularly to determine the distribution of soil salinity. A great fluctuation in CU of water content and ECb at 60 cm depth was observed for the low uniformity treatment during the irrigation season, while a relatively stable variation pattern was observed for the high uniformity treatment. The ECb CU was substantially lower than the water content CU and its value was greatly related to the water content CU and the initial ECb CU. The spatial variation of seasonal mean soil water content and seasonal mean soil bulk electrical conductivity showed a high dependence on the variation pattern of emitter discharge rate along a dripline for the low and medium uniformity treatments. A greater irrigation amount produced a significantly lower soil salinity at the end of the irrigation season, while the influence of the system uniformity on the soil salinity was insignificant at a probability level of 0.1. In arid regions, the determination of the target drip irrigation system uniformity should consider the potential salinity risk of soil caused by nonuniform water application as the influence of the system uniformity on the distribution of the soil salinity was progressively strengthened during the growing season of crop. 展开更多
关键词 drip irrigation UNIFORMITY soil water content soil bulk electrical conductivity soil salinity
下载PDF
Hydrogeochemical characterization and quality assessment of groundwater using self-organizing maps in the Hangjinqi gasfield area,Ordos Basin,NW China 被引量:4
10
作者 Chu Wu Chen Fang +2 位作者 Xiong Wu Ge Zhu Yuzhe Zhang 《Geoscience Frontiers》 SCIE CAS CSCD 2021年第2期781-790,共10页
Water resources are scarce in arid or semiarid areas,which not only limits economic development,but also threatens the survival of mankind.The local communities around the Hangjinqi gasfield depend on groundwater sour... Water resources are scarce in arid or semiarid areas,which not only limits economic development,but also threatens the survival of mankind.The local communities around the Hangjinqi gasfield depend on groundwater sources for water supply.A clear understanding of the groundwater hydrogeochemical characteristics and the groundwater quality and its seasonal cycle is invaluable and indispensable for groundwater protection and management.In this study,self-organizing maps were used in combination with the quantization and topographic errors and K-means clustering method to investigate groundwater chemistry datasets.The Piper and Gibbs diagrams and saturation index were systematically applied to investigate the hydrogeochemical characteristics of groundwater from both rainy and dry seasons.Further,the entropy-weighted theory was used to characterize groundwater quality and assess its seasonal variability and suitability for drinking purposes.Our hydrochemical groundwater dataset,consisting of 10 parameters measured during both dry and rainy seasons,was classified into 6 clusters,and the Piper diagram revealed three hydrochemical facies:Cl-Na type(clusters 1,2 and 3),mixed type(clusters 4 and 5),and HCO3-Ca type(cluster 6).The Gibbs diagram and saturation index suggested thatweathering of rock-forming mineralswere the primary process controlling groundwater chemical composition and validated the credibility and practicality of the clustering results.Two-thirds of 45 groundwater samples were categorized as excellent-or good-quality and were suitable as drinking water.Cluster changes within the same and different clusters from the dry season to the rainy season were detected in approximately 78%of the collected samples.The main factors affecting the groundwater quality were hydrogeochemical characteristics,and dry season groundwater quality was better than rainy season groundwater quality.Based on this work,such results can be used to investigate the seasonal variation of hydrogeochemical characteristics and assess water quality accurately in the others similar area. 展开更多
关键词 Self-organizing maps Seasonal change Entropy-weighted theory Hydrogeochemical characteristics Groundwater quality
下载PDF
Glacier area change and its impact on runoff in the Manas River Basin,Northwest China from 2000 to 2020
11
作者 WANG Tongxia CHEN Fulong +5 位作者 LONG Aihua ZHANG Zhengyong HE Chaofei LYU Tingbo LIU Bo HUANG Yanhao 《Journal of Arid Land》 SCIE CSCD 2024年第7期877-894,共18页
Understanding the distribution and dynamics of glaciers is of great significance to the management and allocation of regional water resources and socio-economic development in arid regions of Northwest China.In this s... Understanding the distribution and dynamics of glaciers is of great significance to the management and allocation of regional water resources and socio-economic development in arid regions of Northwest China.In this study,based on 36 Landsat images,we extracted the glacier boundaries in the Manas River Basin,Northwest China from 2000 to 2020 using eCognition combined with band operation,GIS(geographic information system)spatial overlay techniques,and manual visual interpretation.We further analyzed the distribution and variation characteristics of glacier area,and simulated glacial runoff using a distributed degree-day model to explore the regulation of runoff recharge.The results showed that glacier area in the Manas River Basin as a whole showed a downward trend over the past 21 a,with a decrease of 10.86%and an average change rate of–0.54%/a.With the increase in glacier scale,the number of smaller glaciers decreased exponentially,and the number and area of larger glaciers were relatively stable.Glacier area showed a normal distribution trend of increasing first and then decreasing with elevation.About 97.92%of glaciers were distributed at 3700–4800 m,and 48.11%of glaciers were observed on the northern and northeastern slopes.The retreat rate of glaciers was the fastest(68.82%)at elevations below 3800 m.There was a clear rise in elevation at the end of glaciers.Glaciers at different slope directions showed a rapid melting trend from the western slope to the southern slope then to the northern slope.Glacial runoff in the basin showed a fluctuating upward trend in the past 21 a,with an increase rate of 0.03×10^(8) m^(3)/a.The average annual glacial runoff was 4.80×10^(8) m^(3),of which 33.31%was distributed in the ablation season(June–September).The average annual contribution rate of glacial meltwater to river runoff was 35.40%,and glacial runoff accounted for 45.37%of the total runoff during the ablation season.In addition,precipitation and glacial runoff had complementary regulation patterns for river runoff.The findings can provide a scientific basis for water resource management in the Manas River Basin and other similar arid inland river basins. 展开更多
关键词 glacier area glacial runoff climate change glacier boundary extraction distributed degree-day model Manas River Basin
下载PDF
Spatiotemporal characteristics and driving mechanisms of land use/land cover(LULC)changes in the Jinghe River Basin,China
12
作者 WANG Yinping JIANG Rengui +4 位作者 YANG Mingxiang XIE Jiancang ZHAO Yong LI Fawen LU Xixi 《Journal of Arid Land》 SCIE CSCD 2024年第1期91-109,共19页
Understanding the trajectories and driving mechanisms behind land use/land cover(LULC)changes is essential for effective watershed planning and management.This study quantified the net change,exchange,total change,and... Understanding the trajectories and driving mechanisms behind land use/land cover(LULC)changes is essential for effective watershed planning and management.This study quantified the net change,exchange,total change,and transfer rate of LULC in the Jinghe River Basin(JRB),China using LULC data from 2000 to 2020.Through trajectory analysis,knowledge maps,chord diagrams,and standard deviation ellipse method,we examined the spatiotemporal characteristics of LULC changes.We further established an index system encompassing natural factors(digital elevation model(DEM),slope,aspect,and curvature),socio-economic factors(gross domestic product(GDP)and population),and accessibility factors(distance from railways,distance from highways,distance from water,and distance from residents)to investigate the driving mechanisms of LULC changes using factor detector and interaction detector in the geographical detector(Geodetector).The key findings indicate that from 2000 to 2020,the JRB experienced significant LULC changes,particularly for farmland,forest,and grassland.During the study period,LULC change trajectories were categorized into stable,early-stage,late-stage,repeated,and continuous change types.Besides the stable change type,the late-stage change type predominated the LULC change trajectories,comprising 83.31% of the total change area.The period 2010-2020 witnessed more active LULC changes compared to the period 2000-2010.The LULC changes exhibited a discrete spatial expansion trend during 2000-2020,predominantly extending from southeast to northwest of the JRB.Influential driving factors on LULC changes included slope,GDP,and distance from highways.The interaction detection results imply either bilinear or nonlinear enhancement for any two driving factors impacting the LULC changes from 2000 to 2020.This comprehensive understanding of the spatiotemporal characteristics and driving mechanisms of LULC changes offers valuable insights for the planning and sustainable management of LULC in the JRB. 展开更多
关键词 land use/land cover(LULC)changes driving mechanisms trajectory analysis geographical detector(Geodetector) Grain for Green Project Jinghe River Basin
下载PDF
Baseflow:Potential Pathway Underlying a High Nitrogen Concentra-tion in a Less-rainy WatershedTaking Chaohe River Basin of China as an Example
13
作者 JIN Zhongtian TANG Shinan +5 位作者 LIU Zhuoran CAO Qinyuan CHEN Dadi SHEN Zhenyao ZHAO Ye CHEN Lei 《Chinese Geographical Science》 SCIE CSCD 2024年第6期1032-1044,共13页
Baseflow is one of the major pathways of runoff in hilly areas,and its contributions to surface water resources and pollutant loads cannot be ignored.In this study,based on water quantity and quality data from 1988 to... Baseflow is one of the major pathways of runoff in hilly areas,and its contributions to surface water resources and pollutant loads cannot be ignored.In this study,based on water quantity and quality data from 1988 to 2019 in hilly and low rainfall watersheds,we focused on the impact of long-term baseflow on nitrogen load using the load allocation based on the baseflow separation method.We also constructed a nitrogen balance model for the Chaohe River Basin of China from 2012 to 2021 to analyze the nitrogen accumulation in the basin.We used the baseflow nitrogen load lag analysis method to study the lag characteristics of the baseflow discharge process and analyzed the response and periodicity of baseflow nitrogen to precipitation and soil accumulation using time delay analysis.The res-ults showed that the contribution rate of baseflow nitrogen reached 69%and showed a slight increasing trend from 1988 to 2019.The ef-fects of changes in precipitation and nitrogen accumulation on the baseflow contribution was observed after 1-2 and 2 yr,respectively.After nitrogen accumulation,it entered the river channel through baseflow,which was already the main and continuous source of nitro-gen in rivers in hilly areas. 展开更多
关键词 BASEFLOW hilly aera nitrogen load lag response Chaohe River Basin China
下载PDF
In-situ construction of abundant active centers on hierarchically porous carbon electrode toward high-performance phosphate electrosorption: Synergistic effect of electric field and capture sites
14
作者 Peng Zhang Fukuan Li +6 位作者 Mingming He Silu Huo Xueli Zhang Benqiang Cen Dezhi Fang Kexun Li Hao Wang 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第1期126-137,共12页
Phosphate removal is crucial for eutrophication control and water quality improvement.Electro-assisted adsorption,an eco-friendly elec-trosorption process,exhibited a promising potential for wastewater treatment.Howev... Phosphate removal is crucial for eutrophication control and water quality improvement.Electro-assisted adsorption,an eco-friendly elec-trosorption process,exhibited a promising potential for wastewater treatment.However,there are few works focused on phosphate electro-sorption,and reported electrodes cannot attach satisfactory removal capacities and rates.Herein,electro-assisted adsorption of phosphate via in-situ construction of La active centers on hierarchically porous carbon(LaPC)has been originally demonstrated.The resulted LaPC composite not only possessed a hierarchically porous structure with uniformly dispersed La active sites,but also provided good conductivity for interfacial electron transfer.The LaPC electrode achieved an ultrahigh phosphate electrosorption capability of 462.01 mg g^(-1) at 1 V,outperforming most existing electrodes.The superior phosphate removal performance originates from abundant active centers formed by the coupling of electricfield and capture sites.Besides,the stability and selectivity toward phosphate capture were maintained well even under comprehensive conditions.Moreover,a series of kinetics and isotherms models were employed to validate the electrosorption process.This work demonstrates a deep understanding and promotes a new level of phosphate electrosorption. 展开更多
关键词 Electro-assisted adsorption ELECTROSORPTION Phosphate removal Active centers MOF-derived carbon
下载PDF
Ordered mesoporous materials for water pollution treatment:Adsorption and catalysis
15
作者 Peng Zhang Mingming He +4 位作者 Wei Teng Fukuan Li Xinyuan Qiu Kexun Li Hao Wang 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第8期1239-1256,共18页
To meet the growing emission of water contaminants,the development of new materials that enhance the efficiency of the water treatment system is urgent.Ordered mesoporous materials provide opportunities in environment... To meet the growing emission of water contaminants,the development of new materials that enhance the efficiency of the water treatment system is urgent.Ordered mesoporous materials provide opportunities in environmental processing applications due to their exceptionally high surface areas,large pore sizes,and enough pore volumes.These properties might enhance the performance of materials concerning adsorption/catalysis capability,durability,and stability.In this review,we enumerate the ordered mesoporous materials as adsorbents/catalysts and their modifications in water pollution treatment from the past decade,including heavy metals(Hg^(2+),Pb^(2+),Cd^(2+),Cr^(6+),etc.),toxic anions(nitrate,phosphate,fluoride,etc.),and organic contaminants(organic dyes,antibiotics,etc.).These contributions demonstrate a deep understanding of the synergistic effect between the incorporated framework and homogeneous active centers.Besides,the challenges and perspectives of the future developments of ordered mesoporous materials in wastewater treatment are proposed.This work provides a theoretical basis and complete summary for the application of ordered mesoporous materials in the removal of contaminants from aqueous solutions. 展开更多
关键词 Water pollution treatment Ordered mesoporous materials Toxic contaminants ADSORPTION CATALYSIS
下载PDF
Simulation of water and nitrogen dynamics as affected by drip fertigation strategies 被引量:8
16
作者 ZHANG Jian-jun LI Jiu-sheng +1 位作者 ZHAO Bing-qiang LI Yan-ting 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2015年第12期2434-2445,共12页
The aim of drip fertigation is synchronising the application of water and nutrients with crop requirements, and maintaining the proper concentration and distribution of nutrient and water in the soil. The wetting patt... The aim of drip fertigation is synchronising the application of water and nutrients with crop requirements, and maintaining the proper concentration and distribution of nutrient and water in the soil. The wetting patterns and nutrient distributions under drip fertigation have been proved to be closely related to the fertigation strategies. In order to find out the critical factors that affect the nutrient distribution under different drip fertigaiton strategies, a computer simulation model HYDRUS2D/3D was used to simulate the water and nitrate distribution for various fertigation strategies from a surface point source. Simulation results were compared with the observed ones from our previous studies. A 15° wedge-shaped plexiglass container was used in our experiment to represent one-twenty-fourth of the complete cylinder. The height of container is 40 cm, and the radius is 41 cm. The ammonium nitrate solution was added through a no. 7 needle connected to a Mariotte tube with a flexible hose. The soil water content, nitrate and ammonium concentrations were measured. The comparison of simulated and observed data demonstrated that the model performed reliably. The numerical analysis for various fertigation strategies from a surface point source showed that:(1) The total amount of irrigation water, the concentration of the fertilizer solution and the amount of pure water used to flush the pipeline after fertilizer solution application are the three critical factors influencing the distribution of water and fertilizer nitrogen in the soil.(2) The fresh water irrigation duration prior to fertigation has no obvious effect on nitrate distribution. The longer flushing time period after fertigation resulted in nitrate accumulation closer to the wetting front. From the point of avoiding the possibility of nitrate loss from the root zone, we recommended that the flushing time period should be as shorter as possible.(3) For a given amount of fertilizer, higher concentration of the fertilizer applied solution reduces the potential of nitrate leaching in drip irrigation system. While, lower concentration of the fertilizer solution resulted in an uniform distribution of nitrate band closer to the wetted front. 展开更多
关键词 fertigation strategy drip irrigation modelling nitrate transport
下载PDF
Numerical simulation of groundwater and early warnings from the simulated dynamic evolution trend in the plain area of Shenyang,Liaoning Province(P.R. China) 被引量:2
17
作者 LIU Jun-qiu XIE Xin-min 《Journal of Groundwater Science and Engineering》 2016年第4期367-376,共10页
Groundwater level is the most direct factor reflecting whether groundwater is in a virtuous cycle. It is the most important benchmark for deciding whether a balance can be struck between groundwater discharge and rech... Groundwater level is the most direct factor reflecting whether groundwater is in a virtuous cycle. It is the most important benchmark for deciding whether a balance can be struck between groundwater discharge and recharge and whether groundwater exploitation will trigger problems pertinent to environment, ecology and environmental geology. According to the borehole and long-term monitoring wells data in the plain area of Shenyang, a numerical groundwater model is established and used to identify and verify the hydrogeological parameters and balanced items of groundwater. Then the concept of red line levels, the control levels of groundwater is proposed, the dynamic evolution trend of groundwater under different scenarios is analyzed and predicted and groundwater alerts are given when groundwater tables are not between the lower limit and the upper limit. Results indicated:(1) The results of identification and verification period fitted well, and the calculation accuracy of balanced items was high;(2) with the implementation of shutting wells, groundwater levels in urban areas of Shenyang would exceed the upper limit water level after 2020 and incur some secondary disasters;(3) under the recommended scenario of water resources allocation, early-warnings for groundwater tables outside the range would occur in the year of 2020, 2023, 2025 respectively for successive wet, normal and dry years. It was imperative to reopen some groundwater sources and enhance real-time supervision and early-warning to prevent the occurrence of potential problems. 展开更多
关键词 Groundwater table Groundwater exploitation Numerical modeling of groundwater Plain area of Shenyang
下载PDF
Simulation of the Fate of Faecal Bacteria in Estuarine and Coastal Waters Based on A Fractionated Sediment Transport Model 被引量:1
18
作者 YANG Chen LIU Ying 《China Ocean Engineering》 SCIE EI CSCD 2017年第4期389-395,共7页
A two-dimensional depth-integrated numerical model is refined in this paper to simulate the hydrodynamics, graded sediment transport process and the fate of faecal bacteria in estuarine and coastal waters. The sedimen... A two-dimensional depth-integrated numerical model is refined in this paper to simulate the hydrodynamics, graded sediment transport process and the fate of faecal bacteria in estuarine and coastal waters. The sediment mixture is divided into several fractions according to the grain size. A bed evolution model is adopted to simulate the processes of the bed elevation change and sediment grain size sorting. The faecal bacteria transport equation includes enhanced source and sink terms to represent bacterial kinetic transformation and disappearance or reappearance due to sediment deposition or re-suspension. A novel partition ratio and dynamic decay rates of faecal bacteria are adopted in the numerical model. The model has been applied to the turbid water environment in the Bristol Channel and Severn estuary, UK. The predictions by the present model are compared with field data and those by non-fractionated model. 展开更多
关键词 bed evolution decay rate esmarine and coastal water faecal bacteria fractionated model sediment Wansport
下载PDF
Prediction and verification of earthquakes induced by the Xiluodu hydropower station reservoir 被引量:1
19
作者 Tinggai Chang Baohua Li Xinxiang Zeng 《Earthquake Science》 2022年第5期387-397,共11页
Research has been conducted on reservoir-induced earthquakes in China since the Xinfengjiang reservoir-induced earthquakes in the 1960s.Regulations now require the risk of reservoir-induced earthquakes to be evaluated... Research has been conducted on reservoir-induced earthquakes in China since the Xinfengjiang reservoir-induced earthquakes in the 1960s.Regulations now require the risk of reservoir-induced earthquakes to be evaluated in the pre-research stage of all hydropower projects.Although nearly 40 cases of reservoir-induced earthquakes have been reported in China,analyses comparing the changes in seismic activity following reservoir impoundment with predictions are rare.In this study,we compared seismic activities observed in the reservoir area before and after the impoundment of the Xiluodu hydropower station in terms of the spatial distribution,frequency,and focal depths of the earthquakes,and clarified the correlation between their frequency/timing and reservoir level after impoundment.We then concluded that the seismic events in the head region were karst-type earthquakes,while those in the second segment of the reservoir were tectonic earthquakes.The spatial distribution of the earthquake epicenters and the seismic intensities validated some of the results for the reservoir-induced seismic risk assessment for the Xiluodu hydropower station,indicating that the proposed earthquake triggers and predictive models are reasonable.This study can provide a valuable reference for investigating the mechanism(s)of reservoir-induced earthquakes,revising reservoir-induced earthquake hazard assessment codes,and predicting the hazard zones of reservoir-induced seismicity under similar conditions. 展开更多
关键词 seismic activity reservoir-induced earthquake reservoir level seismic hazard zones seismic energy release
下载PDF
A dynamic model for exploring water-resource management scenarios in an inland arid area: Shanshan County, Northwestern China 被引量:2
20
作者 CHEN Chao AHMAD Sajjad +1 位作者 KALRA Ajay XU Zhi-xia 《Journal of Mountain Science》 SCIE CSCD 2017年第6期1039-1057,共19页
Water scarcity is a challenge in many arid and semi-arid regions; this may lead to a series of environmental problems and could be stressed even further by the effects from climate change. This study focused on the wa... Water scarcity is a challenge in many arid and semi-arid regions; this may lead to a series of environmental problems and could be stressed even further by the effects from climate change. This study focused on the water resource management in Shanshan County, an inland arid region located in northwestern China with a long history of groundwater overexploitation. A model of the supply and demand system in the study area from 2006 to2030, including effects from global climate change,was developed using a system dynamics(SD)modeling tool. This SD model was used to 1) explore the best water-resource management options by testing system responses under various scenarios and2) identify the principal factors affecting the responses, aiming for a balance of the groundwater system and sustainable socio-economic development.Three causes were identified as primarily responsible for water issues in Shanshan: low water-use efficiency low water reuse, and increase in industrial waterdemand. To address these causes, a combined scenario was designed and simulated, which was able to keep the water deficiency under 5% by 2030. The model provided some insights into the dynamic interrelations that generate system behavior and the key factors in the system that govern water demand and supply. The model as well as the study results may be useful in water resources management in Shanshan and may be applied, with appropriate modifications, to other regions facing similar water management challenges. 展开更多
关键词 System dynamics Water resources management Northwestern China Water scarcity
下载PDF
上一页 1 2 18 下一页 到第
使用帮助 返回顶部