The chayged particles produced in nucleus-nucleus collisions are classified into two parts. One is from the hot and dense matter created in collisions with the evolution dominated by revised Landau hydrodynamics, and ...The chayged particles produced in nucleus-nucleus collisions are classified into two parts. One is from the hot and dense matter created in collisions with the evolution dominated by revised Landau hydrodynamics, and the other is from leading particles. The rapidity distributions of these two parts of the particles are presented, which are then compared with the experimental measurements carried out by a CERN-LHC-ALICE collaboration in Pb-Pb collisions at √SNN = 2.76 TeV. The theoretical results are consistent with the experimental data.展开更多
The revised Landau hydrodynamic model is used to discuss the pseudorapidity distributions of the produced charged particles in Au+Au and Cu+Cu collisions at energies of s √SNN=19.6 and 22.4 GeV respectively at the ...The revised Landau hydrodynamic model is used to discuss the pseudorapidity distributions of the produced charged particles in Au+Au and Cu+Cu collisions at energies of s √SNN=19.6 and 22.4 GeV respectively at the BNL Relativistic Heavy Ion Collider. It is found that the revised Landau hydrodynamic model alone can give a good description of the experimental measurements. This is different from the result with the same collisions but at the maximum energy of√SNN=200 GeV, where in addition to the revised Landau hydrodynamic model, the effects of leading particles have to be taken into account in order to explain the experimental observations. This can be attributed to the different degrees of transparency of participants at the different incident energies.展开更多
文摘The chayged particles produced in nucleus-nucleus collisions are classified into two parts. One is from the hot and dense matter created in collisions with the evolution dominated by revised Landau hydrodynamics, and the other is from leading particles. The rapidity distributions of these two parts of the particles are presented, which are then compared with the experimental measurements carried out by a CERN-LHC-ALICE collaboration in Pb-Pb collisions at √SNN = 2.76 TeV. The theoretical results are consistent with the experimental data.
基金Supported by Transformation Project of Science and Technology of Shanghai Baoshan District(CXY-2012-25)Shanghai Leading Academic Discipline Project(XTKX 2012)
文摘The revised Landau hydrodynamic model is used to discuss the pseudorapidity distributions of the produced charged particles in Au+Au and Cu+Cu collisions at energies of s √SNN=19.6 and 22.4 GeV respectively at the BNL Relativistic Heavy Ion Collider. It is found that the revised Landau hydrodynamic model alone can give a good description of the experimental measurements. This is different from the result with the same collisions but at the maximum energy of√SNN=200 GeV, where in addition to the revised Landau hydrodynamic model, the effects of leading particles have to be taken into account in order to explain the experimental observations. This can be attributed to the different degrees of transparency of participants at the different incident energies.