Background The reliance on a solitary linear reference genome has imposed a significant constraint on our compre-hensive understanding of genetic variation in animals.This constraint is particularly pronounced for non...Background The reliance on a solitary linear reference genome has imposed a significant constraint on our compre-hensive understanding of genetic variation in animals.This constraint is particularly pronounced for non-reference sequences(NRSs),which have not been extensively studied.Results In this study,we constructed a pig pangenome graph using 21 pig assemblies and identified 23,831 NRSs with a total length of 105 Mb.Our findings revealed that NRSs were more prevalent in breeds exhibiting greater genetic divergence from the reference genome.Furthermore,we observed that NRSs were rarely found within coding sequences,while NRS insertions were enriched in immune-related Gene Ontology terms.Notably,our investigation also unveiled a close association between novel genes and the immune capacity of pigs.We observed substantial differences in terms of frequencies of NRSs between Eastern and Western pigs,and the heat-resistant pigs exhibited a substantial number of NRS insertions in an 11.6 Mb interval on chromosome X.Additionally,we discovered a 665 bp insertion in the fourth intron of the TNFRSF19 gene that may be associated with the ability of heat tolerance in South-ern Chinese pigs.Conclusions Our findings demonstrate the potential of a graph genome approach to reveal important functional features of NRSs in pig populations.展开更多
Planar sliding is one of the frequently observed types of failure in rock slopes.Kinematic analysis is a classic and widely used method to examine the potential failure modes in rock masses.The accuracy of planar slid...Planar sliding is one of the frequently observed types of failure in rock slopes.Kinematic analysis is a classic and widely used method to examine the potential failure modes in rock masses.The accuracy of planar sliding kinematic analysis is significantly influenced by the value assigned to the lateral limit angleγlim.However,the assignment ofγlim is currently used generally based on an empirical criterion.This study aims to propose an approach for determining the value ofγlim in deterministic and probabilistic kinematic planar sliding analysis.A new perspective is presented to reveal thatγlim essentially influences the probability of forming a potential planar sliding block.The procedure to calculate this probability is introduced using the block theory method.It is found that the probability is correlated with the number of discontinuity sets presented in rock masses.Thus,different values ofγlim for rock masses with different sets of discontinuities are recommended in both probabilistic and deterministic planar sliding kinematic analyses;whereas a fixed value ofγlim is commonly assigned to different types of rock masses in traditional method.Finally,an engineering case was used to compare the proposed and traditional kinematic analysis methods.The error rates of the traditional method vary from 45%to 119%,while that of the proposed method ranges between 1%and 17%.Therefore,it is likely that the proposed method is superior to the traditional one.展开更多
Carbon nano additives(CNAs)are critical to achieving the unique properties of functionalized composites,however,controlling the dispersion of CNAs in material matrix is always a challenging task.In this study,a simple...Carbon nano additives(CNAs)are critical to achieving the unique properties of functionalized composites,however,controlling the dispersion of CNAs in material matrix is always a challenging task.In this study,a simple atomization approach was successfully developed to promote the dispersion efficiency of graphene nanoplatelets(GNPs)in cement composites.This atomization approach can be integrated with the direct,indirect and combined ultrasonic stirrings in a homemade automatic stirring-atomization device.Mechanical and microstructure tests were performed on hardened cement pastes blended with GNPs in different stirring and mixing approaches.Results show that the direct ultrasonic stirrings enabled more homogeneous dispersions of GNP particles with a smaller size for a longer duration.The atomized droplets with the mean size of~100μm largely mitigated GNPs’agglomerations.Monolayer GNPs were observed in the cement matrix with the strength gain by up to 54%,and the total porosity decrease by 21%in 0.3 wt%GNPs dosage.The greatly enhanced dispersion efficiency of GNPs in cement also raised the cement hydration.This work provides an effective and manpower saving technique toward dispersing CNAs in engineering materials with great industrialization prospects.展开更多
The current methods used to industrially produce sinomenine hydrochloride involve several issues,including high solvent toxicity,long process flow,and low atomic utilization efficiency,and the greenness scores of the ...The current methods used to industrially produce sinomenine hydrochloride involve several issues,including high solvent toxicity,long process flow,and low atomic utilization efficiency,and the greenness scores of the processes are below 65 points.To solve these problems,a new process using anisole as the extractant was proposed.Anisole exhibits high selectivity for sinomenine and can be connected to the subsequent water-washing steps.After alkalization of the medicinal material,heating extraction,water washing,and acidification crystallization were carried out.The process was modeled and optimized.The design space was constructed.The recommended operating ranges for the critical process parameters were 3.0–4.0 h for alkalization time,60.0–80.0℃ for extraction temperature,2.0–3.0(volume ratio)for washing solution amount,and 2.0–2.4 mol·L^(-1) for hydrochloric acid concentration.The new process shows good robustness because different batches of medicinal materials did not greatly impact crystal purity or sinomenine transfer rate.The sinomenine transfer rate was about 20%higher than that of industrial processes.The greenness score increased to 90 points since the novel process proposed in this research solves the problems of long process flow,high solvent toxicity,and poor atomic economy,better aligning with the concept of green chemistry.展开更多
Spinal cord injuries impose a notably economic burden on society,mainly because of the severe after-effects they cause.Despite the ongoing development of various therapies for spinal cord injuries,their effectiveness ...Spinal cord injuries impose a notably economic burden on society,mainly because of the severe after-effects they cause.Despite the ongoing development of various therapies for spinal cord injuries,their effectiveness remains unsatisfactory.However,a deeper understanding of metabolism has opened up a new therapeutic opportunity in the form of metabolic reprogramming.In this review,we explore the metabolic changes that occur during spinal cord injuries,their consequences,and the therapeutic tools available for metabolic reprogramming.Normal spinal cord metabolism is characterized by independent cellular metabolism and intercellular metabolic coupling.However,spinal cord injury results in metabolic disorders that include disturbances in glucose metabolism,lipid metabolism,and mitochondrial dysfunction.These metabolic disturbances lead to corresponding pathological changes,including the failure of axonal regeneration,the accumulation of scarring,and the activation of microglia.To rescue spinal cord injury at the metabolic level,potential metabolic reprogramming approaches have emerged,including replenishing metabolic substrates,reconstituting metabolic couplings,and targeting mitochondrial therapies to alter cell fate.The available evidence suggests that metabolic reprogramming holds great promise as a next-generation approach for the treatment of spinal cord injury.To further advance the metabolic treatment of the spinal cord injury,future efforts should focus on a deeper understanding of neurometabolism,the development of more advanced metabolomics technologies,and the design of highly effective metabolic interventions.展开更多
Photocatalytic CO_(2)reduction to produce high value-added carbon-based fuel has been proposed as a promising approach to mitigate global warming issues.However,the conversion efficiency and product selectivity are st...Photocatalytic CO_(2)reduction to produce high value-added carbon-based fuel has been proposed as a promising approach to mitigate global warming issues.However,the conversion efficiency and product selectivity are still low due to the sluggish dynamics of transfer processes involved in proton-assisted multi-electron reactions.Lowering the formation energy barriers of intermediate products is an effective method to enhance the selectivity and productivity of final products.In this study,we aim to regulate the surface electronic structure of Bi_(2)WO_(6)by doping surface chlorine atoms to achieve effective photocatalytic CO_(2)reduction.Surface Cl atoms can enhance the absorption ability of light,affect its energy band structure and promote charge separation.Combined with DFT calculations,it is revealed that surface Cl atoms can not only change the surface charge distribution which affects the competitive adsorption of H_(2)O and CO_(2),but also lower the formation energy barrier of intermediate products to generate more intermediate*COOH,thus facilitating CO production.Overall,this study demonstrates a promising surface halogenation strategy to enhance the photocatalytic CO_(2)reduction activity of a layered structure Bi-based catalyst.展开更多
Pertussis is an acute and highly contagious respiratory disease caused by Bordetella pertussis(B.pertussis),which occurs in people of all ages and is most dangerous for young children,especially infants.The introducti...Pertussis is an acute and highly contagious respiratory disease caused by Bordetella pertussis(B.pertussis),which occurs in people of all ages and is most dangerous for young children,especially infants.The introduction of whole-cell pertussis vaccines(wPVs)in the 1950s dramatically reduced the incidence of pertussis worldwide[1].However,over the past two decades,many studies have reported the resurgence of pertussis in different countries[2].Epidemiological surveillance in Hubei Province over the last 3 years revealed a clear increasing trend in the incidence of pertussis during the coronavirus disease 2019(COVID-19)epidemic.展开更多
Background:Calcific aortic valve stenosis(CAVS)is one of the most challenging heart diseases in clinical with rapidly increasing prevalence.However,study of the mecha-nism and treatment of CAVS is hampered by the lack...Background:Calcific aortic valve stenosis(CAVS)is one of the most challenging heart diseases in clinical with rapidly increasing prevalence.However,study of the mecha-nism and treatment of CAVS is hampered by the lack of suitable,robust and efficient models that develop hemodynamically significant stenosis and typical calcium deposi-tion.Here,we aim to establish a mouse model to mimic the development and features of CAVS.Methods:The model was established via aortic valve wire injury(AVWI)combined with vitamin D subcutaneous injected in wild type C57/BL6 mice.Serial transthoracic echocardiography was applied to evaluate aortic jet peak velocity and mean gradi-ent.Histopathological specimens were collected and examined in respect of valve thickening,calcium deposition,collagen accumulation,osteogenic differentiation and inflammation.Results:Serial transthoracic echocardiography revealed that aortic jet peak velocity and mean gradient increased from 7 days post model establishment in a time depend-ent manner and tended to be stable at 28 days.Compared with the sham group,sim-ple AVWI or the vitamin D group,the hybrid model group showed typical pathological features of CAVS,including hemodynamic alterations,increased aortic valve thicken-ing,calcium deposition,collagen accumulation at 28 days.In addition,osteogenic dif-ferentiation,fibrosis and inflammation,which play critical roles in the development of CAVS,were observed in the hybrid model.Conclusions:We established a novel mouse model of CAVS that could be induced efficiently,robustly and economically,and without genetic intervention.It provides a fast track to explore the underlying mechanisms of CAVS and to identify more effec-tive pharmacological targets.展开更多
It is challenging to efficiently and economically recycle many lithium-ion batteries(LIBs)because of the low valuation of commodity metals and materials,such as LiFePO_(4).There are millions of tons of spent LIBs wher...It is challenging to efficiently and economically recycle many lithium-ion batteries(LIBs)because of the low valuation of commodity metals and materials,such as LiFePO_(4).There are millions of tons of spent LIBs where the barrier to recycling is economical,and to make recycling more feasible,it is required that the value of the processed recycled material exceeds the value of raw commodity materials.The presented research illustrates improved profitability and economics for recycling spent LIBs by utilizing the surplus energy in lithiated graphite to drive the preparation of organolithiums to add value to the recycled lithium materials.This study methodology demonstrates that the surplus energy of lithiated graphite obtained from spent LIBs can be utilized to prepare high-value organolithiums,thereby significantly improving the economic profitability of LIB recycling.Organolithiums(R-O-Li and R-Li)were prepared using alkyl alcohol(R-OH)and alkyl bromide(R-Br)as substrates,where R includes varying hindered alkyl hydrocarbons.The organolithiums extracted from per kilogram of recycled LIBs can increase the economic value between$29.5 and$226.5 kg^(−1) cell.The value of the organolithiums is at least 5.4 times the total theoretical value of spent materials,improving the profitability of recycling LIBs over traditional pyrometallurgical($0.86 kg^(−1) cell),hydrometallurgical($1.00 kg^(−1) cell),and physical direct recycling methods($5.40 kg^(−1) cell).展开更多
Sinomenine hydrochloride is generally produced from Caulis Sinomenii. At present, the purification process in industrial production suffers from large amount of solid waste, high solvent toxicity, and low sinomenine h...Sinomenine hydrochloride is generally produced from Caulis Sinomenii. At present, the purification process in industrial production suffers from large amount of solid waste, high solvent toxicity, and low sinomenine hydrochloride yield. In this study, a new purification process for sinomenine hydrochloride was proposed by using the extract obtained from acid extraction of Caulis Sinomenii as the starting material.The process included the following steps: alkalization, extraction, water washing, acid–water stripping,drying, and crystallization. 1-Heptanol was used as the extractant. The distribution coefficients of sinomenine and sinomenine hydrochloride in 1-heptanol–water system were 27.4 and 0.0167, respectively.The dissociation constants of sinomenine hydrochloride were 8.27 and 11.24, respectively. Process parameters of the new purification process were optimized with experimental design. The extractant1-heptanol and sinomenine hydrochloride in the crystallization mother solution can be recycled in the new process. The purity of the obtained sinomenine hydrochloride crystals exceeded 85%, and the yield was about 70%. Compared with current industrial processes, safer extractant, less solid waste, and higher sinomenine hydrochloride yield can be achieved using the new purification process of sinomenine hydrochloride provided in this study.展开更多
Continuous preparation of pyromellitic dianhydride(PMDA) from durene has been studied using a fixedbed reactor. The reaction was performed using a phosphorus-vanadium-titanium ternary catalyst.Relatively high selectiv...Continuous preparation of pyromellitic dianhydride(PMDA) from durene has been studied using a fixedbed reactor. The reaction was performed using a phosphorus-vanadium-titanium ternary catalyst.Relatively high selectivity and yield of PMDA was obtained. The in-situ characterization was combined with theoretical calculation to reveal the reaction mechanisms, and the remarkable doping effect was discussed.展开更多
Regeneration and reconstruction of bone tissue is always a challenge for clinicians due to the uncertainty of bone repair materials in terms of long-term and efficient effects on osteoblasts.Here,we propose a novel st...Regeneration and reconstruction of bone tissue is always a challenge for clinicians due to the uncertainty of bone repair materials in terms of long-term and efficient effects on osteoblasts.Here,we propose a novel strategy combining benidipine,an antihypertensive drug and nanoparticles to synergistically promote the healing of bone defects.Loose and porous benidipine-loaded magnesium silicate nanoparticles were prepared and validated for their biosafety.The nanoparticles were efficiently taken up by preosteoblasts and uniformly distributed around the nucleus.After internalization into cells,the nanosystem is degraded by lysosomes,and the effect of promoting osteogenic differentiation is reflected by the continuous release of benidipine,silicon and magnesium ions.Our results clearly evaluated that the nanoflower-like magnesium silicate delivering benidipine tends to be more appropriate for the bone regeneration in preosteoblasts,indicating that it might be a potential approach in guiding bone repair in clinical applications.展开更多
Countryside development paths and phase characters of typical developed countries and regions were analyzed,such as the East Asian Model(Japan and South Korea),and Western European Model(Germany and the Netherlands).T...Countryside development paths and phase characters of typical developed countries and regions were analyzed,such as the East Asian Model(Japan and South Korea),and Western European Model(Germany and the Netherlands).The former is based on the big gap between urban and rural development,and the latter is based on the balanced development of urban and rural areas,both of them achieved the world’s leading level of countryside construction.In Zhejiang Province,"China’s Beautiful Countryside"represented by Anji,and"Zhejiang Green Agricultural Product Base"represented by Xianju emerged in the county level.Motivation mechanisms for countryside development in China and abroad were analyzed,including industrial system,infrastructure,ecological environment,and local culture.展开更多
Using observational data from multiple satellites,we studied seasonal variations of the shape and location of the Luzon cold eddy(LCE)northwest of Luzon Island.The shape and location of the LCE have obvious seasonal v...Using observational data from multiple satellites,we studied seasonal variations of the shape and location of the Luzon cold eddy(LCE)northwest of Luzon Island.The shape and location of the LCE have obvious seasonal variations.The LCE occurs,develops,and disappears from December to April of the next year.During this period,the shape of the LCE changed from a flat ellipse to a circular ellipse,and the change in shape can be reflected by the increase of the ellipticity of the LCE from 0.16 to 0.82.The latitude of center location of the LCE changes from 17.4°N to 19°N,and the change in latitude can reach 1.6°.Further study showed that seasonal variation of the northeast monsoon intensity leads to the change in the shape and location of the LCE.The seasonal variation of the LCE shape can significantly alter the spatial distribution of the thermal front and chlorophyll a northwest of the Luzon Island by geostrophic advection.展开更多
Salmonella enterica has a wide diversity,with numerous serovars belonging to six different subspecies with dynamic animal-host tropism.The FimH protein is the adhesin mediating binding to various cells,and slight amin...Salmonella enterica has a wide diversity,with numerous serovars belonging to six different subspecies with dynamic animal-host tropism.The FimH protein is the adhesin mediating binding to various cells,and slight amino acid discrepancy significantly affects the adherence capacities.To date,the general function of FimH variability across dif-ferent subspecies of Salmonella enterica has not been addressed.To investigate the biological functions of FimH among the six Salmonella enterica subspecies,the present study performed several assays to determine biofilm for-mation,Caenorhabditis elegans killing,and intestinal porcine enterocyte cell IPEC-J2 adhesion by using various FimH allele mutants.In general,allelic mutations in both the lectin and pilin domains of FimH could cause changes in bind-ing affnity,such as the N79S mutation.We also observed that the N79S variation in Salmonella Dublin increased the adhesive ability of IPEC-J2 cells.Moreover,a new amino acid substitution,T260M,within the pilin domain in one subspecies llb strain beneficial to binding to cells was highlighted in this study,even though the biofilm-forming and Caenorhabditis elegans-killing abilities exhibited no significant differences in variants.Combined with point muta-tions being a natural tendency due to positive selection in harsh environments,we speculate that allelic variation T26oM probably contributes to pathoadaptive evolution in Salmonella enterica subspecies llb.展开更多
Gaining a better understanding of autoprotection against drug-induced liver injury(DILI)may provide new strategies for its prevention and therapy.However,little is known about the underlying mechanisms of this phenome...Gaining a better understanding of autoprotection against drug-induced liver injury(DILI)may provide new strategies for its prevention and therapy.However,little is known about the underlying mechanisms of this phenomenon.We used single-cell RNA sequencing to characterize the dynamics and functions of hepatic non-parenchymal cells(NPCs)in autoprotection against DILI,using acetaminophen(APAP)as a model drug.Autoprotection was modeled through pretreatment with a mildly hepatotoxic dose of APAP in mice,followed by a higher dose in a secondary challenge.NPC subsets and dynamic changes were identified in the APAP(hepatotoxicity-sensitive)and APAP-resistant(hepatotoxicity-resistant)groups.A chemokine(C-C motif)ligand 2^(+)endothelial cell subset almost disappeared in the APAP-resistant group,and an R-spondin 3^(+)endothelial cell subset promoted hepatocyte proliferation and played an important role in APAP autoprotection.Moreover,the dendritic cell subset DC-3 may protect the liver from APAP hepatotoxicity by inducing low reactivity and suppressing the autoimmune response and occurrence of inflammation.DC-3 cells also promoted angiogenesis through crosstalk with endothelial cells via vascular endothelial growth factor-associated ligand-receptor pairs and facilitated liver tissue repair in the APAP-resistant group.In addition,the natural killer cell subsets NK-3 and NK-4 and the Sca-1^(-)CD62L^(+)natural killer T cell subset may promote autoprotection through interferon-γ-dependent pathways.Furthermore,macrophage and neutrophil subpopulations with anti-inflammatory phenotypes promoted tolerance to APAP hepatotoxicity.Overall,this study reveals the dynamics of NPCs in the resistance to APAP hepatotoxicity and provides novel insights into the mechanism of autoprotection against DILI at a high resolution.展开更多
Panax ginseng(PG)and Panax notoginseng(PN)are highly valuable Chinese medicines(CM).Although both CMs have similar active constituents,their clinical applications are clearly different.Over the past decade,RNA sequenc...Panax ginseng(PG)and Panax notoginseng(PN)are highly valuable Chinese medicines(CM).Although both CMs have similar active constituents,their clinical applications are clearly different.Over the past decade,RNA sequencing(RNA-seq)analysis has been employed to investigate the molecular mechanisms of extracts or monomers.However,owing to the limited number of samples in standard RNA-seq,few studies have systematically compared the effects of PG and PN spanning multiple conditions at the transcriptomic level.Here,we developed an approach that simultaneously profiles transcriptome changes for multiplexed samples using RNA-seq(TCM-seq),a high-throughput,low-cost workflow to molecularly evaluate CM perturbations.A species-mixing experiment was conducted to illustrate the accuracy of sample multiplexing in TCM-seq.Transcriptomes from repeated samples were used to verify the robustness of TCM-seq.We then focused on the primary active components,Panax notoginseng saponins(PNS)and Panax ginseng saponins(PGS)extracted from PN and PG,respectively.We also characterized the transcriptome changes of 10 cell lines,treated with four different doses of PNS and PGS,using TCM-seq to compare the differences in their perturbing effects on genes,functional pathways,gene modules,and molecular networks.The results of transcriptional data analysis showed that the transcriptional patterns of various cell lines were significantly distinct.PGS exhibited a stronger regulatory effect on genes involved in cardiovascular disease,whereas PNS resulted in a greater coagulation effect on vascular endothelial cells.This study proposes a paradigm to comprehensively explore the differences in mechanisms of action between CMs based on transcriptome readouts.展开更多
Millimeter-scale animals such as Caenorhabditis elegans,Drosophila larvae,zebrafish,and bees serve as powerful model organisms in the fields of neurobiology and neuroethology.Various methods exist for recording large-...Millimeter-scale animals such as Caenorhabditis elegans,Drosophila larvae,zebrafish,and bees serve as powerful model organisms in the fields of neurobiology and neuroethology.Various methods exist for recording large-scale electrophysiological signals from these animals.Existing approaches often lack,however,real-time,uninterrupted investigations due to their rigid constructs,geometric constraints,and mechanical mismatch in integration with soft organisms.The recent research establishes the foundations for 3-dimensional flexible bioelectronic interfaces that incorporate microfabricated components and nanoelectronic function with adjustable mechanical properties and multidimensional variability,offering unique capabilities for chronic,stable interrogation and stimulation of millimeter-scale animals and miniature tissue constructs.This review summarizes the most advanced technologies for electrophysiological studies,based on methods of 3-dimensional flexible bioelectronics.A concluding section addresses the challenges of these devices in achieving freestanding,robust,and multifunctional biointerfaces.展开更多
Hydrogel-based tissue-engineered skin has attracted increased attention due to its potential to restore the structural integrity and functionality of skin.However,the mechanical properties of hydrogel scaffolds and na...Hydrogel-based tissue-engineered skin has attracted increased attention due to its potential to restore the structural integrity and functionality of skin.However,the mechanical properties of hydrogel scaffolds and natural skin are substantially different.Here,we developed a polyvinyl alcohol(PVA)/acrylamide based interpenetrating network(IPN)hydrogel that was surface modified with polydopamine(PDA)and termed Dopa-gel.The Dopa-gel exhibited mechanical properties similar to native skin tissue and a superior ability to modulate paracrine functions.Furthermore,a tough scaffold with tensile resistance was fabricated using this hydrogel by three-dimensional printing.The results showed that the interpenetration of PVA,alginate,and polyacrylamide networks notably enhanced the mechanical properties of the hydrogel.Surface modification with PDA endowed the hydrogels with increased secretion of immunomodulatory and proangiogenic factors.In an in vivo model,Dopa-gel treatment accelerated wound closure,increased vascularization,and promoted a shift in macrophages from a proinflammatory M1 phenotype to a prohealing and anti-inflammatory M2 phenotype within the wound area.Mechanistically,the focal adhesion kinase(FAK)/extracellular signal-related kinase(ERK)signaling pathway may mediate the promotion of skin defect healing by increasing paracrine secretion via the Dopa-gel.Additionally,proangiogenic factors can be induced through Rho-associated kinase-2(ROCK-2)/vascular endothelial growth factor(VEGF)-mediated paracrine secretion under tensile stress conditions.Taken together,these findings suggest that the multifunctional Dopa-gel,which has good mechanical properties similar to those of native skin tissue and enhanced immunomodulatory and angiogenic properties,is a promising scaffold for skin tissue regeneration.展开更多
In the realm of large-scale machine learning,it is crucial to explore methods for reducing computational complexity and memory demands while maintaining generalization performance.Additionally,since the collected data...In the realm of large-scale machine learning,it is crucial to explore methods for reducing computational complexity and memory demands while maintaining generalization performance.Additionally,since the collected data may contain some sensitive information,it is also of great significance to study privacy-preserving machine learning algorithms.This paper focuses on the performance of the differentially private stochastic gradient descent(SGD)algorithm based on random features.To begin,the algorithm maps the original data into a lowdimensional space,thereby avoiding the traditional kernel method for large-scale data storage requirement.Subsequently,the algorithm iteratively optimizes parameters using the stochastic gradient descent approach.Lastly,the output perturbation mechanism is employed to introduce random noise,ensuring algorithmic privacy.We prove that the proposed algorithm satisfies the differential privacy while achieving fast convergence rates under some mild conditions.展开更多
基金This work was supported by the National Key Research and Development Program of China(grant no.2022YFF1000500)National Natural Science Foundation of China(grant no.31941007)Zhejiang province agriculture(livestock)varieties breeding Key Technology R&D Program(grant no.2016C02054-2).
文摘Background The reliance on a solitary linear reference genome has imposed a significant constraint on our compre-hensive understanding of genetic variation in animals.This constraint is particularly pronounced for non-reference sequences(NRSs),which have not been extensively studied.Results In this study,we constructed a pig pangenome graph using 21 pig assemblies and identified 23,831 NRSs with a total length of 105 Mb.Our findings revealed that NRSs were more prevalent in breeds exhibiting greater genetic divergence from the reference genome.Furthermore,we observed that NRSs were rarely found within coding sequences,while NRS insertions were enriched in immune-related Gene Ontology terms.Notably,our investigation also unveiled a close association between novel genes and the immune capacity of pigs.We observed substantial differences in terms of frequencies of NRSs between Eastern and Western pigs,and the heat-resistant pigs exhibited a substantial number of NRS insertions in an 11.6 Mb interval on chromosome X.Additionally,we discovered a 665 bp insertion in the fourth intron of the TNFRSF19 gene that may be associated with the ability of heat tolerance in South-ern Chinese pigs.Conclusions Our findings demonstrate the potential of a graph genome approach to reveal important functional features of NRSs in pig populations.
基金funded by National Natural Science Foundation,China(Grant Nos.41972264 and 42207214)Zhejiang Provincial Natural Science Foundation,China(Grant No.LR22E080002).
文摘Planar sliding is one of the frequently observed types of failure in rock slopes.Kinematic analysis is a classic and widely used method to examine the potential failure modes in rock masses.The accuracy of planar sliding kinematic analysis is significantly influenced by the value assigned to the lateral limit angleγlim.However,the assignment ofγlim is currently used generally based on an empirical criterion.This study aims to propose an approach for determining the value ofγlim in deterministic and probabilistic kinematic planar sliding analysis.A new perspective is presented to reveal thatγlim essentially influences the probability of forming a potential planar sliding block.The procedure to calculate this probability is introduced using the block theory method.It is found that the probability is correlated with the number of discontinuity sets presented in rock masses.Thus,different values ofγlim for rock masses with different sets of discontinuities are recommended in both probabilistic and deterministic planar sliding kinematic analyses;whereas a fixed value ofγlim is commonly assigned to different types of rock masses in traditional method.Finally,an engineering case was used to compare the proposed and traditional kinematic analysis methods.The error rates of the traditional method vary from 45%to 119%,while that of the proposed method ranges between 1%and 17%.Therefore,it is likely that the proposed method is superior to the traditional one.
基金supported by the Fundamental Research Funds for the Central Universities(No.226-2023-00010)National Natural Science Foundation of China(No.52038004)ZJU-ZCCC Institute of Collaborative Innovation(No.ZDJG2021008).
文摘Carbon nano additives(CNAs)are critical to achieving the unique properties of functionalized composites,however,controlling the dispersion of CNAs in material matrix is always a challenging task.In this study,a simple atomization approach was successfully developed to promote the dispersion efficiency of graphene nanoplatelets(GNPs)in cement composites.This atomization approach can be integrated with the direct,indirect and combined ultrasonic stirrings in a homemade automatic stirring-atomization device.Mechanical and microstructure tests were performed on hardened cement pastes blended with GNPs in different stirring and mixing approaches.Results show that the direct ultrasonic stirrings enabled more homogeneous dispersions of GNP particles with a smaller size for a longer duration.The atomized droplets with the mean size of~100μm largely mitigated GNPs’agglomerations.Monolayer GNPs were observed in the cement matrix with the strength gain by up to 54%,and the total porosity decrease by 21%in 0.3 wt%GNPs dosage.The greatly enhanced dispersion efficiency of GNPs in cement also raised the cement hydration.This work provides an effective and manpower saving technique toward dispersing CNAs in engineering materials with great industrialization prospects.
基金supported by the Innovation Team and Talents Cultivation Program of the National Administration of Traditional Chinese Medicine(ZYYCXTD-D-202002)the Fundamental Research Funds for the Central Universities(226-2022-00226).
文摘The current methods used to industrially produce sinomenine hydrochloride involve several issues,including high solvent toxicity,long process flow,and low atomic utilization efficiency,and the greenness scores of the processes are below 65 points.To solve these problems,a new process using anisole as the extractant was proposed.Anisole exhibits high selectivity for sinomenine and can be connected to the subsequent water-washing steps.After alkalization of the medicinal material,heating extraction,water washing,and acidification crystallization were carried out.The process was modeled and optimized.The design space was constructed.The recommended operating ranges for the critical process parameters were 3.0–4.0 h for alkalization time,60.0–80.0℃ for extraction temperature,2.0–3.0(volume ratio)for washing solution amount,and 2.0–2.4 mol·L^(-1) for hydrochloric acid concentration.The new process shows good robustness because different batches of medicinal materials did not greatly impact crystal purity or sinomenine transfer rate.The sinomenine transfer rate was about 20%higher than that of industrial processes.The greenness score increased to 90 points since the novel process proposed in this research solves the problems of long process flow,high solvent toxicity,and poor atomic economy,better aligning with the concept of green chemistry.
基金supported by the National Natural Science Foundation of China,No.82202681(to JW)the Natural Science Foundation of Zhejiang Province,Nos.LZ22H090003(to QC),LR23H060001(to CL).
文摘Spinal cord injuries impose a notably economic burden on society,mainly because of the severe after-effects they cause.Despite the ongoing development of various therapies for spinal cord injuries,their effectiveness remains unsatisfactory.However,a deeper understanding of metabolism has opened up a new therapeutic opportunity in the form of metabolic reprogramming.In this review,we explore the metabolic changes that occur during spinal cord injuries,their consequences,and the therapeutic tools available for metabolic reprogramming.Normal spinal cord metabolism is characterized by independent cellular metabolism and intercellular metabolic coupling.However,spinal cord injury results in metabolic disorders that include disturbances in glucose metabolism,lipid metabolism,and mitochondrial dysfunction.These metabolic disturbances lead to corresponding pathological changes,including the failure of axonal regeneration,the accumulation of scarring,and the activation of microglia.To rescue spinal cord injury at the metabolic level,potential metabolic reprogramming approaches have emerged,including replenishing metabolic substrates,reconstituting metabolic couplings,and targeting mitochondrial therapies to alter cell fate.The available evidence suggests that metabolic reprogramming holds great promise as a next-generation approach for the treatment of spinal cord injury.To further advance the metabolic treatment of the spinal cord injury,future efforts should focus on a deeper understanding of neurometabolism,the development of more advanced metabolomics technologies,and the design of highly effective metabolic interventions.
基金supported by the National Natural Science Foundation of China(Grant No.51708078)Natural Science Foundation of Chongqing(Grant No.CSTB2022NSCQ-MSX0815)+2 种基金Science and Technology Research Program of Chongqing Municipal Education Commission(Grant No.KJQN202200542)the Chongqing Innovative Research Group Project(Grant No.CXQT21015)Foundation of Chongqing Normal University(22XLB022).
文摘Photocatalytic CO_(2)reduction to produce high value-added carbon-based fuel has been proposed as a promising approach to mitigate global warming issues.However,the conversion efficiency and product selectivity are still low due to the sluggish dynamics of transfer processes involved in proton-assisted multi-electron reactions.Lowering the formation energy barriers of intermediate products is an effective method to enhance the selectivity and productivity of final products.In this study,we aim to regulate the surface electronic structure of Bi_(2)WO_(6)by doping surface chlorine atoms to achieve effective photocatalytic CO_(2)reduction.Surface Cl atoms can enhance the absorption ability of light,affect its energy band structure and promote charge separation.Combined with DFT calculations,it is revealed that surface Cl atoms can not only change the surface charge distribution which affects the competitive adsorption of H_(2)O and CO_(2),but also lower the formation energy barrier of intermediate products to generate more intermediate*COOH,thus facilitating CO production.Overall,this study demonstrates a promising surface halogenation strategy to enhance the photocatalytic CO_(2)reduction activity of a layered structure Bi-based catalyst.
基金supported by Hubei Province Key R&D Program Project,grant number 2020BCA090,2021BCA148,2022BCE010The Medical Scientific Research Foundation of Hubei Province,China,grant number No.JX6B23+1 种基金the Natural Science Foundation of Hubei Province,grant number 2018CFB630Open Foundation of the Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization[EWPL202301].
文摘Pertussis is an acute and highly contagious respiratory disease caused by Bordetella pertussis(B.pertussis),which occurs in people of all ages and is most dangerous for young children,especially infants.The introduction of whole-cell pertussis vaccines(wPVs)in the 1950s dramatically reduced the incidence of pertussis worldwide[1].However,over the past two decades,many studies have reported the resurgence of pertussis in different countries[2].Epidemiological surveillance in Hubei Province over the last 3 years revealed a clear increasing trend in the incidence of pertussis during the coronavirus disease 2019(COVID-19)epidemic.
基金National Natural Science Foundation of China,Grant/Award Number:81770252,82030014,82271606 and U22A20267Binjiang Institute of Zhejiang University,Grant/Award Number:ZY202205SMKY001Key Program of Major Science and Technology Projects in Zhejiang Province,Grant/Award Number:2021C03097 and 2022C03063。
文摘Background:Calcific aortic valve stenosis(CAVS)is one of the most challenging heart diseases in clinical with rapidly increasing prevalence.However,study of the mecha-nism and treatment of CAVS is hampered by the lack of suitable,robust and efficient models that develop hemodynamically significant stenosis and typical calcium deposi-tion.Here,we aim to establish a mouse model to mimic the development and features of CAVS.Methods:The model was established via aortic valve wire injury(AVWI)combined with vitamin D subcutaneous injected in wild type C57/BL6 mice.Serial transthoracic echocardiography was applied to evaluate aortic jet peak velocity and mean gradi-ent.Histopathological specimens were collected and examined in respect of valve thickening,calcium deposition,collagen accumulation,osteogenic differentiation and inflammation.Results:Serial transthoracic echocardiography revealed that aortic jet peak velocity and mean gradient increased from 7 days post model establishment in a time depend-ent manner and tended to be stable at 28 days.Compared with the sham group,sim-ple AVWI or the vitamin D group,the hybrid model group showed typical pathological features of CAVS,including hemodynamic alterations,increased aortic valve thicken-ing,calcium deposition,collagen accumulation at 28 days.In addition,osteogenic dif-ferentiation,fibrosis and inflammation,which play critical roles in the development of CAVS,were observed in the hybrid model.Conclusions:We established a novel mouse model of CAVS that could be induced efficiently,robustly and economically,and without genetic intervention.It provides a fast track to explore the underlying mechanisms of CAVS and to identify more effec-tive pharmacological targets.
基金National Natural Science Foundation of China,Grant/Award Number:51232005Key-Area Research and Development Program of Guangdong Province,Grant/Award Number:2020B090919003+1 种基金Joint Fund of the National Natural Science Foundation of China,Grant/Award Number:U1401243Shenzhen Technical Plan Project,Grant/Award Number:CYJ20170412170911187。
文摘It is challenging to efficiently and economically recycle many lithium-ion batteries(LIBs)because of the low valuation of commodity metals and materials,such as LiFePO_(4).There are millions of tons of spent LIBs where the barrier to recycling is economical,and to make recycling more feasible,it is required that the value of the processed recycled material exceeds the value of raw commodity materials.The presented research illustrates improved profitability and economics for recycling spent LIBs by utilizing the surplus energy in lithiated graphite to drive the preparation of organolithiums to add value to the recycled lithium materials.This study methodology demonstrates that the surplus energy of lithiated graphite obtained from spent LIBs can be utilized to prepare high-value organolithiums,thereby significantly improving the economic profitability of LIB recycling.Organolithiums(R-O-Li and R-Li)were prepared using alkyl alcohol(R-OH)and alkyl bromide(R-Br)as substrates,where R includes varying hindered alkyl hydrocarbons.The organolithiums extracted from per kilogram of recycled LIBs can increase the economic value between$29.5 and$226.5 kg^(−1) cell.The value of the organolithiums is at least 5.4 times the total theoretical value of spent materials,improving the profitability of recycling LIBs over traditional pyrometallurgical($0.86 kg^(−1) cell),hydrometallurgical($1.00 kg^(−1) cell),and physical direct recycling methods($5.40 kg^(−1) cell).
基金supported by the Innovation Team and Talents Cultivation Program of National Administration of Traditional Chinese Medicine (ZYYCXTD-D-202002)the National Project for Standardization of Chinese Materia Medica (ZYBZH-C-GD-04)。
文摘Sinomenine hydrochloride is generally produced from Caulis Sinomenii. At present, the purification process in industrial production suffers from large amount of solid waste, high solvent toxicity, and low sinomenine hydrochloride yield. In this study, a new purification process for sinomenine hydrochloride was proposed by using the extract obtained from acid extraction of Caulis Sinomenii as the starting material.The process included the following steps: alkalization, extraction, water washing, acid–water stripping,drying, and crystallization. 1-Heptanol was used as the extractant. The distribution coefficients of sinomenine and sinomenine hydrochloride in 1-heptanol–water system were 27.4 and 0.0167, respectively.The dissociation constants of sinomenine hydrochloride were 8.27 and 11.24, respectively. Process parameters of the new purification process were optimized with experimental design. The extractant1-heptanol and sinomenine hydrochloride in the crystallization mother solution can be recycled in the new process. The purity of the obtained sinomenine hydrochloride crystals exceeded 85%, and the yield was about 70%. Compared with current industrial processes, safer extractant, less solid waste, and higher sinomenine hydrochloride yield can be achieved using the new purification process of sinomenine hydrochloride provided in this study.
基金financial support by the National Natural Science Foundation of China (21878265)。
文摘Continuous preparation of pyromellitic dianhydride(PMDA) from durene has been studied using a fixedbed reactor. The reaction was performed using a phosphorus-vanadium-titanium ternary catalyst.Relatively high selectivity and yield of PMDA was obtained. The in-situ characterization was combined with theoretical calculation to reveal the reaction mechanisms, and the remarkable doping effect was discussed.
基金supported by the National Natural Science Foundation of China(Nos.8212200044,82071085,31872752,and 81600909)the Zhejiang Provincial Natu-ral Science Foundation of China(Nos.LR21H140001,LY22H140002,and LQ22C100003)+1 种基金the National Key Research and Development Pro-gram of China(No.2018YFA0703000)the Medical Technology and Education of Zhejiang Province of China(No.2018KY501).
文摘Regeneration and reconstruction of bone tissue is always a challenge for clinicians due to the uncertainty of bone repair materials in terms of long-term and efficient effects on osteoblasts.Here,we propose a novel strategy combining benidipine,an antihypertensive drug and nanoparticles to synergistically promote the healing of bone defects.Loose and porous benidipine-loaded magnesium silicate nanoparticles were prepared and validated for their biosafety.The nanoparticles were efficiently taken up by preosteoblasts and uniformly distributed around the nucleus.After internalization into cells,the nanosystem is degraded by lysosomes,and the effect of promoting osteogenic differentiation is reflected by the continuous release of benidipine,silicon and magnesium ions.Our results clearly evaluated that the nanoflower-like magnesium silicate delivering benidipine tends to be more appropriate for the bone regeneration in preosteoblasts,indicating that it might be a potential approach in guiding bone repair in clinical applications.
基金Sponsored by Zhejiang Provincial Natural Science Fund(Y6110576)
文摘Countryside development paths and phase characters of typical developed countries and regions were analyzed,such as the East Asian Model(Japan and South Korea),and Western European Model(Germany and the Netherlands).The former is based on the big gap between urban and rural development,and the latter is based on the balanced development of urban and rural areas,both of them achieved the world’s leading level of countryside construction.In Zhejiang Province,"China’s Beautiful Countryside"represented by Anji,and"Zhejiang Green Agricultural Product Base"represented by Xianju emerged in the county level.Motivation mechanisms for countryside development in China and abroad were analyzed,including industrial system,infrastructure,ecological environment,and local culture.
基金The 2022 Research Program of Sanya Yazhou Bay Science and Technology City under contract No.SKJC-2022-01-001the Project of Sanya Yazhou Bay Science and Technology City under contract No.SCKJ-JYRC-2022-47+4 种基金the National Natural Science Foundation of China under contract No.41806019the Natural Science Foundation of Hainan Province under contract No.121MS062the National Natural Science Foundation of China under contract Nos 42006008 and 41876031the National Key Research and Development Plan of China under contract No.2016YFC1401603the Research Startup Funding from Hainan Institute of Zhejiang University under contract No.HZY20210801。
文摘Using observational data from multiple satellites,we studied seasonal variations of the shape and location of the Luzon cold eddy(LCE)northwest of Luzon Island.The shape and location of the LCE have obvious seasonal variations.The LCE occurs,develops,and disappears from December to April of the next year.During this period,the shape of the LCE changed from a flat ellipse to a circular ellipse,and the change in shape can be reflected by the increase of the ellipticity of the LCE from 0.16 to 0.82.The latitude of center location of the LCE changes from 17.4°N to 19°N,and the change in latitude can reach 1.6°.Further study showed that seasonal variation of the northeast monsoon intensity leads to the change in the shape and location of the LCE.The seasonal variation of the LCE shape can significantly alter the spatial distribution of the thermal front and chlorophyll a northwest of the Luzon Island by geostrophic advection.
基金supported by the National Program on Key Research Project of China(2022YFC2604201)well as the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement No.861917-SAFFl,Zhejiang Provincial Key R&D Program of China(2023C03045)+2 种基金Hainan Provincial Joint Project of Sanya Yazhou Bay Science and Technology City(2021JJLH0083)Key Research and Development Program of Hangzhou(202203A08)District-level project for high-level innovative and entrepreneurial talents of"Zijinshan Talents Gaochun Plan"(202100677).
文摘Salmonella enterica has a wide diversity,with numerous serovars belonging to six different subspecies with dynamic animal-host tropism.The FimH protein is the adhesin mediating binding to various cells,and slight amino acid discrepancy significantly affects the adherence capacities.To date,the general function of FimH variability across dif-ferent subspecies of Salmonella enterica has not been addressed.To investigate the biological functions of FimH among the six Salmonella enterica subspecies,the present study performed several assays to determine biofilm for-mation,Caenorhabditis elegans killing,and intestinal porcine enterocyte cell IPEC-J2 adhesion by using various FimH allele mutants.In general,allelic mutations in both the lectin and pilin domains of FimH could cause changes in bind-ing affnity,such as the N79S mutation.We also observed that the N79S variation in Salmonella Dublin increased the adhesive ability of IPEC-J2 cells.Moreover,a new amino acid substitution,T260M,within the pilin domain in one subspecies llb strain beneficial to binding to cells was highlighted in this study,even though the biofilm-forming and Caenorhabditis elegans-killing abilities exhibited no significant differences in variants.Combined with point muta-tions being a natural tendency due to positive selection in harsh environments,we speculate that allelic variation T26oM probably contributes to pathoadaptive evolution in Salmonella enterica subspecies llb.
基金supported by the National Natural Science Foundation of China(Grant No.:81870426)the Innovation Team and Talents Cultivation Program of National Administration of Traditional Chinese Medicine(Grant No.:ZYYCXTD-D-202002)the Fundamental Research Funds for the Central Universities(Grant No.:226-2023-00059),and the Fundamental Research Funds for the Central Universities.
文摘Gaining a better understanding of autoprotection against drug-induced liver injury(DILI)may provide new strategies for its prevention and therapy.However,little is known about the underlying mechanisms of this phenomenon.We used single-cell RNA sequencing to characterize the dynamics and functions of hepatic non-parenchymal cells(NPCs)in autoprotection against DILI,using acetaminophen(APAP)as a model drug.Autoprotection was modeled through pretreatment with a mildly hepatotoxic dose of APAP in mice,followed by a higher dose in a secondary challenge.NPC subsets and dynamic changes were identified in the APAP(hepatotoxicity-sensitive)and APAP-resistant(hepatotoxicity-resistant)groups.A chemokine(C-C motif)ligand 2^(+)endothelial cell subset almost disappeared in the APAP-resistant group,and an R-spondin 3^(+)endothelial cell subset promoted hepatocyte proliferation and played an important role in APAP autoprotection.Moreover,the dendritic cell subset DC-3 may protect the liver from APAP hepatotoxicity by inducing low reactivity and suppressing the autoimmune response and occurrence of inflammation.DC-3 cells also promoted angiogenesis through crosstalk with endothelial cells via vascular endothelial growth factor-associated ligand-receptor pairs and facilitated liver tissue repair in the APAP-resistant group.In addition,the natural killer cell subsets NK-3 and NK-4 and the Sca-1^(-)CD62L^(+)natural killer T cell subset may promote autoprotection through interferon-γ-dependent pathways.Furthermore,macrophage and neutrophil subpopulations with anti-inflammatory phenotypes promoted tolerance to APAP hepatotoxicity.Overall,this study reveals the dynamics of NPCs in the resistance to APAP hepatotoxicity and provides novel insights into the mechanism of autoprotection against DILI at a high resolution.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.:81973701 and 81903767)the Innovation Team and Talents Cultivation Program of National Administration of Traditional Chinese Medicine(Grant No.:ZYYCXTD-D-202002)the Natural Science Foundation of Zhejiang Province(Grant No.:LZ20H290002).
文摘Panax ginseng(PG)and Panax notoginseng(PN)are highly valuable Chinese medicines(CM).Although both CMs have similar active constituents,their clinical applications are clearly different.Over the past decade,RNA sequencing(RNA-seq)analysis has been employed to investigate the molecular mechanisms of extracts or monomers.However,owing to the limited number of samples in standard RNA-seq,few studies have systematically compared the effects of PG and PN spanning multiple conditions at the transcriptomic level.Here,we developed an approach that simultaneously profiles transcriptome changes for multiplexed samples using RNA-seq(TCM-seq),a high-throughput,low-cost workflow to molecularly evaluate CM perturbations.A species-mixing experiment was conducted to illustrate the accuracy of sample multiplexing in TCM-seq.Transcriptomes from repeated samples were used to verify the robustness of TCM-seq.We then focused on the primary active components,Panax notoginseng saponins(PNS)and Panax ginseng saponins(PGS)extracted from PN and PG,respectively.We also characterized the transcriptome changes of 10 cell lines,treated with four different doses of PNS and PGS,using TCM-seq to compare the differences in their perturbing effects on genes,functional pathways,gene modules,and molecular networks.The results of transcriptional data analysis showed that the transcriptional patterns of various cell lines were significantly distinct.PGS exhibited a stronger regulatory effect on genes involved in cardiovascular disease,whereas PNS resulted in a greater coagulation effect on vascular endothelial cells.This study proposes a paradigm to comprehensively explore the differences in mechanisms of action between CMs based on transcriptome readouts.
基金N.Z.acknowledges the support from“STI 2030-Major Projects 2021ZD0200405”and National Natural Science Foundation of China(T2293723 and 61972347)K.N.acknowledges the support from start-up funding for the ZJU100 professorship from Zhejiang UniversityJ.A.R.acknowledges funding from the Querrey Simpson Institute for Bioelectronics.
文摘Millimeter-scale animals such as Caenorhabditis elegans,Drosophila larvae,zebrafish,and bees serve as powerful model organisms in the fields of neurobiology and neuroethology.Various methods exist for recording large-scale electrophysiological signals from these animals.Existing approaches often lack,however,real-time,uninterrupted investigations due to their rigid constructs,geometric constraints,and mechanical mismatch in integration with soft organisms.The recent research establishes the foundations for 3-dimensional flexible bioelectronic interfaces that incorporate microfabricated components and nanoelectronic function with adjustable mechanical properties and multidimensional variability,offering unique capabilities for chronic,stable interrogation and stimulation of millimeter-scale animals and miniature tissue constructs.This review summarizes the most advanced technologies for electrophysiological studies,based on methods of 3-dimensional flexible bioelectronics.A concluding section addresses the challenges of these devices in achieving freestanding,robust,and multifunctional biointerfaces.
基金supported by the National Natural Science Foundation of China(32271413 and 32271408)the National Basic Research Program of China(2021YFA1201404)+2 种基金the Natural Science Foundation of Jiangsu Province(BK20232023)the Science Program of Jiangsu Province Administration for Market Regulation(KJ2024010)the Jiangsu Provincial Key Medical Center Foundation,and the Jiangsu Provincial Medical Outstanding Talent Foundation.
文摘Hydrogel-based tissue-engineered skin has attracted increased attention due to its potential to restore the structural integrity and functionality of skin.However,the mechanical properties of hydrogel scaffolds and natural skin are substantially different.Here,we developed a polyvinyl alcohol(PVA)/acrylamide based interpenetrating network(IPN)hydrogel that was surface modified with polydopamine(PDA)and termed Dopa-gel.The Dopa-gel exhibited mechanical properties similar to native skin tissue and a superior ability to modulate paracrine functions.Furthermore,a tough scaffold with tensile resistance was fabricated using this hydrogel by three-dimensional printing.The results showed that the interpenetration of PVA,alginate,and polyacrylamide networks notably enhanced the mechanical properties of the hydrogel.Surface modification with PDA endowed the hydrogels with increased secretion of immunomodulatory and proangiogenic factors.In an in vivo model,Dopa-gel treatment accelerated wound closure,increased vascularization,and promoted a shift in macrophages from a proinflammatory M1 phenotype to a prohealing and anti-inflammatory M2 phenotype within the wound area.Mechanistically,the focal adhesion kinase(FAK)/extracellular signal-related kinase(ERK)signaling pathway may mediate the promotion of skin defect healing by increasing paracrine secretion via the Dopa-gel.Additionally,proangiogenic factors can be induced through Rho-associated kinase-2(ROCK-2)/vascular endothelial growth factor(VEGF)-mediated paracrine secretion under tensile stress conditions.Taken together,these findings suggest that the multifunctional Dopa-gel,which has good mechanical properties similar to those of native skin tissue and enhanced immunomodulatory and angiogenic properties,is a promising scaffold for skin tissue regeneration.
基金supported by Zhejiang Provincial Natural Science Foundation of China(LR20A010001)National Natural Science Foundation of China(12271473 and U21A20426)。
文摘In the realm of large-scale machine learning,it is crucial to explore methods for reducing computational complexity and memory demands while maintaining generalization performance.Additionally,since the collected data may contain some sensitive information,it is also of great significance to study privacy-preserving machine learning algorithms.This paper focuses on the performance of the differentially private stochastic gradient descent(SGD)algorithm based on random features.To begin,the algorithm maps the original data into a lowdimensional space,thereby avoiding the traditional kernel method for large-scale data storage requirement.Subsequently,the algorithm iteratively optimizes parameters using the stochastic gradient descent approach.Lastly,the output perturbation mechanism is employed to introduce random noise,ensuring algorithmic privacy.We prove that the proposed algorithm satisfies the differential privacy while achieving fast convergence rates under some mild conditions.