Green process engineering, which is based on the principles of the process intensification strategy, can provide an important contribution toward achieving industrial sustainable development. Green process engineering...Green process engineering, which is based on the principles of the process intensification strategy, can provide an important contribution toward achieving industrial sustainable development. Green process engineering refers to innovative equipment and process methods that are expected to bring about substan- tial improvements in chemical and any other manufacturing and processing aspects. It includes decreasing production costs, equipment size, energy consumption, and waste generation, and improving remote con- trol, information fluxes, and process flexibility. Membrane-based technology assists in the pursuit of these principles, and the potential of membrane operations has been widely recognized in the last few years. This work starts by presenting an overview of the membrane operations that are utilized in water treatment and in the production of energy and raw materials. Next, it describes the potential advantages of innovative membrane-based integrated systems. A case study on an integrated membrane system (IMS) for seawa- ter desalination coupled with raw materials production is presented. The aim of this work is to show how membrane systems can contribute to the realization of the goals of zero liquid discharge (ZLD), total raw materials utilization, and low energy consumption.展开更多
This work focuses on the preparation and characterization of flat sheet membrane based on modified polyether ether keetone (PEEK-WC). Additives, such as dibutyl phatalate (DBP) and diethyl hexyl phosphoric acid (DEHPA...This work focuses on the preparation and characterization of flat sheet membrane based on modified polyether ether keetone (PEEK-WC). Additives, such as dibutyl phatalate (DBP) and diethyl hexyl phosphoric acid (DEHPA), were used to investigate their effect on membranes properties which are prepared by immersion precipitation. For that, several techniques were used to characterize membranes like thermal analyses, scanning electron microscopy and microanalyses. SEM pictures show versatile structures of the membranes from dense to porous membranes characterized by a sponge and finger like structure. Moreover, microanalyses of both surfaces, bottom and top surfaces show an aggregation of DEHPA at the top surface of the membrane. However, by adding dibutylphtalate, a well dispersion of the extractant was observed. Initially, micro-porous membranes were used in supported liquid membranes experiments for Ni(II) metal ions transports using diethyl hexyl phosphoric acid (DEHPA) as carrier. The extraction efficiency was very low about 28%, but enhanced by adding xylene to the organic phase. However, the modified membranes (with additives) by DBP and DEHPA were used on solid liquid extraction of Ni(II). The results show that by adding the plasticizer and the extractant, the efficiency of the system reached 63%.展开更多
Arsenic is a natural tasteless and odourless element,existing in the earth's crust at average levels of between two and five thousands micrograms per liter (parts per million) . Arsenic is highly toxic to humans, ...Arsenic is a natural tasteless and odourless element,existing in the earth's crust at average levels of between two and five thousands micrograms per liter (parts per million) . Arsenic is highly toxic to humans, who are exposed to it primarily from air,food and water. The occurrence of arsenic in groundwater is due to geological composition of soil. High concentrations of arsenic in water are the result of dissolution or desorption of ferric oxides and the oxidation of mineral arsenopyrites. Arsenic in drinking water has an important impact on the human health,especially in the less developed countries. Different methods exist to remove arsenic from aquatic media,and one of them is by adsorption. In this work,the adsorption of both As(III) and As(V) by means of novel microspheres has been investigated. In particular,TiO2 has been embedded into polymeric microspheres PES (PolyEtherSulphone) and PEEK-WC (PolyEtherEther-Ketone) . The main advantages of this encapsulation adsorption material are: no loss of adsorbents into the water stream,easy to be used and scaled-up.展开更多
文摘Green process engineering, which is based on the principles of the process intensification strategy, can provide an important contribution toward achieving industrial sustainable development. Green process engineering refers to innovative equipment and process methods that are expected to bring about substan- tial improvements in chemical and any other manufacturing and processing aspects. It includes decreasing production costs, equipment size, energy consumption, and waste generation, and improving remote con- trol, information fluxes, and process flexibility. Membrane-based technology assists in the pursuit of these principles, and the potential of membrane operations has been widely recognized in the last few years. This work starts by presenting an overview of the membrane operations that are utilized in water treatment and in the production of energy and raw materials. Next, it describes the potential advantages of innovative membrane-based integrated systems. A case study on an integrated membrane system (IMS) for seawa- ter desalination coupled with raw materials production is presented. The aim of this work is to show how membrane systems can contribute to the realization of the goals of zero liquid discharge (ZLD), total raw materials utilization, and low energy consumption.
文摘This work focuses on the preparation and characterization of flat sheet membrane based on modified polyether ether keetone (PEEK-WC). Additives, such as dibutyl phatalate (DBP) and diethyl hexyl phosphoric acid (DEHPA), were used to investigate their effect on membranes properties which are prepared by immersion precipitation. For that, several techniques were used to characterize membranes like thermal analyses, scanning electron microscopy and microanalyses. SEM pictures show versatile structures of the membranes from dense to porous membranes characterized by a sponge and finger like structure. Moreover, microanalyses of both surfaces, bottom and top surfaces show an aggregation of DEHPA at the top surface of the membrane. However, by adding dibutylphtalate, a well dispersion of the extractant was observed. Initially, micro-porous membranes were used in supported liquid membranes experiments for Ni(II) metal ions transports using diethyl hexyl phosphoric acid (DEHPA) as carrier. The extraction efficiency was very low about 28%, but enhanced by adding xylene to the organic phase. However, the modified membranes (with additives) by DBP and DEHPA were used on solid liquid extraction of Ni(II). The results show that by adding the plasticizer and the extractant, the efficiency of the system reached 63%.
文摘Arsenic is a natural tasteless and odourless element,existing in the earth's crust at average levels of between two and five thousands micrograms per liter (parts per million) . Arsenic is highly toxic to humans, who are exposed to it primarily from air,food and water. The occurrence of arsenic in groundwater is due to geological composition of soil. High concentrations of arsenic in water are the result of dissolution or desorption of ferric oxides and the oxidation of mineral arsenopyrites. Arsenic in drinking water has an important impact on the human health,especially in the less developed countries. Different methods exist to remove arsenic from aquatic media,and one of them is by adsorption. In this work,the adsorption of both As(III) and As(V) by means of novel microspheres has been investigated. In particular,TiO2 has been embedded into polymeric microspheres PES (PolyEtherSulphone) and PEEK-WC (PolyEtherEther-Ketone) . The main advantages of this encapsulation adsorption material are: no loss of adsorbents into the water stream,easy to be used and scaled-up.