A joint cooperation diversity and symbol mapping diversity (SMD) strategy is proposed for cooperative packet retransmission system with high-order modulation such as 16QAM. Substantial SER/BER (symbol error rate/bit e...A joint cooperation diversity and symbol mapping diversity (SMD) strategy is proposed for cooperative packet retransmission system with high-order modulation such as 16QAM. Substantial SER/BER (symbol error rate/bit error rate) gains result from multiple packet transmissions over independent paths and distinct bit-to-symbol mappings for each packet transmis-sion. The SER/BER performance of relay assisted retransmission system is analyzed. Simulation results show that the joint-diversity strategy can provide more BER gains than other relaying strategies (i.e., decode-and-forward and constellation rearrangement relaying strategies) when no relay makes a decision error; but if some relays make decision errors, the joint-di-versity strategy outperforms other relaying strategies only when the relays are closer to the source than to the destination.展开更多
基金the National Natural Science Foundation of China (No. 60372107)the Natural Science Fund for Higher Educa-tion of Jiangsu Province, China (No. 06KJA51001)the Natural Science Fund of the Science and Technology Department of Jiangsu Province, China (No. BK2007729)
文摘A joint cooperation diversity and symbol mapping diversity (SMD) strategy is proposed for cooperative packet retransmission system with high-order modulation such as 16QAM. Substantial SER/BER (symbol error rate/bit error rate) gains result from multiple packet transmissions over independent paths and distinct bit-to-symbol mappings for each packet transmis-sion. The SER/BER performance of relay assisted retransmission system is analyzed. Simulation results show that the joint-diversity strategy can provide more BER gains than other relaying strategies (i.e., decode-and-forward and constellation rearrangement relaying strategies) when no relay makes a decision error; but if some relays make decision errors, the joint-di-versity strategy outperforms other relaying strategies only when the relays are closer to the source than to the destination.