期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Effects of Surface Roughness of Capillary Wall on the Profile of Thin Liquid Film and Evaporation Heat Transfer 被引量:1
1
作者 QuWei MaTongze 《Journal of Thermal Science》 SCIE EI CAS CSCD 2001年第3期240-246,共7页
The surface of capillary wall can be treated to have a periodic microrelief mathematically. The roughness is micro enough compared with the thickness of the liquid film. So, the surface roughness only exerts influence... The surface of capillary wall can be treated to have a periodic microrelief mathematically. The roughness is micro enough compared with the thickness of the liquid film. So, the surface roughness only exerts influence on the adsorptive potential. Macroscopically, the flow field of the liquid film can be considered as that when the rough surface has an equivalent smooth surface, whose position is at the crests of the microrelief. The mechanism of heat transfer is in connection with two resistances: the thermal resistance of the liquid film conduction and the thermal resistance of the interfacial evaporation. The capillary pressure between the two sides of the vapor-liquid interface due to the interfacial curvature and the disjoining pressure owing to the thin liquid film are considered simultaneously. Several micro tubes with different micro rough surfaces are studied. The length of the evaporating interfacial region decreases with the increase of roughness angle and/or the increase of the roughness height. The heat transfer coefficient and the temperature of the vapor-liquid interface will change to fit the constant mass flow rate. 展开更多
关键词 periodic microrelief roughness angle roughness height.
原文传递
Experimental Studies on Heat Transfer Characteristics in Inverted Evaporator of Micro/Miniature Capillary Pumped Loop
2
作者 ZhuNing HouZengqi 《Journal of Thermal Science》 SCIE EI CAS CSCD 1996年第2期99-103,共5页
This paper presents the experimental investigation on the heat transfer chaxacteristics in inverted evaporator of Micro/Miniature Capillary Pumped Loop (MCPL). The evaporation heat transfer coefficients as a function ... This paper presents the experimental investigation on the heat transfer chaxacteristics in inverted evaporator of Micro/Miniature Capillary Pumped Loop (MCPL). The evaporation heat transfer coefficients as a function of the heat flux density, the geometrical sizes of capillary wick structure and the vapor grooves are shown. Qualitative analysis of the heat transfer characteristics of the inverted evaporator of MCPL is also made. 展开更多
关键词 heat transfer inverted evaporator capillary pumped loop
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部