The structure and hardness of 8CrWMoV steel with multiple types of ultra fine carbides are studied after annealing, quenching and tempering in this paper. The results show that multiple types of carbides M3C, M7C3, M2...The structure and hardness of 8CrWMoV steel with multiple types of ultra fine carbides are studied after annealing, quenching and tempering in this paper. The results show that multiple types of carbides M3C, M7C3, M23C6, M6C and MC were observed in the annealed steel. Nucleation and coalescence of new carbides, partial dissolution of original carbides in γ phase region during annealing at 800~840℃, result in ultra-fine carbides. Average size of the carbides is0.33~0.34μm in the steel annealed at 800~840℃. Because M3C and M23C6 dissolve easily in austenite, the high hardness HRC63~65 can be obtained by quenching at 840~860℃. Un-dissolved carbides M6C and MC (VC) can effectively prevent the coarsening of austenitic grain, and conduce to obtain very fine martensite. The retained austenite can be easy to decompose during tempering at low and middle temperature due to the precipitation of multiple types of carbides and the good tempering-resistance of the steel is obtained. The microstructure and property of the steel after heat treatment can be accurately explained by calculating based on phase equilibrium thermodynamic.Key Words: 8CrWMoV steel, ultra-fine carbide, heat treatment, microstructure,展开更多
The changes of tempering microstructure and properties of Fe-Cr-V-Ni-Mn-C cast alloys with martensite matrix and much retained austenite are studied. The results showed that when tempering at 200 °C the amount of...The changes of tempering microstructure and properties of Fe-Cr-V-Ni-Mn-C cast alloys with martensite matrix and much retained austenite are studied. The results showed that when tempering at 200 °C the amount of retained austenite in the alloys is so much that is nearly to as-cast, and a lot of retained austenite decomposes when tempering at 350°C and the retained austenite decomposes almost until tempering at 560 °C. When tempering at 600 °C, the retained austenite in the alloys all decomposes. At 560°C the hardness is highest due to secondary hardening. The effect of nickel and manganese on the microstructure and properties of Fe-Cr-V-C cast alloy were also studied. The results show that the Fe-Cr-V-C cast alloy added nickel and manganese can obtain martensite matrix and much retained austenite microstructure, and nickel can also prevent pearlite transformation. With the increasing content of nickel and manganese, the hardness of as-cast alloy will decreases gradually, so one can improve the hardness of alloy by tempering process. When the content of nickel and manganese is 1.3-1.7%, the hardness of secondary hardening is the highest (HRC64). But when the content of nickel and manganese increase continually, the hardness of secondary hardening is low slightly, and the tempering temperature of secondary hardening rises.展开更多
The adhesion and the fracture toughness of thermally grown oxide scales for pure nickel were investigated using Vickers indentation technique. The nickel samples were oxidised at 1200°C for 100h-600h. The crack l...The adhesion and the fracture toughness of thermally grown oxide scales for pure nickel were investigated using Vickers indentation technique. The nickel samples were oxidised at 1200°C for 100h-600h. The crack length induced by Vickers indentation test at NiO/Ni interface increases linearly with the incresing of the applied load in a logarithmic scale for each oxide thickness. There is a critical load Pc, when the applied load P>PC, the crack is produced at the oxide/metal interface. The critical load PC decreases with the increasing of the oxide thickness. Therefore, the relation between the critical load PC and the oxide thickness ho may be used as describing the adhesion of of thermally grown oxide scales. For pure nickel, the Pc-ho relation can be represented by the equation Pc = 761439e"°’°695’1" The fracture toughness in oxide and at the interface decrease with the increasing of the oxide thickness in equation K0 —1.02l4Ln(h0) + 7.3382 (in oxide) and KJ = 529.7In,,"**424 (at the interface). And there is a higher fracture toughness at the NiO/Ni interface. Therefore, for pure nickel, the oxide/metal interface is stronger than the oxide.展开更多
文摘The structure and hardness of 8CrWMoV steel with multiple types of ultra fine carbides are studied after annealing, quenching and tempering in this paper. The results show that multiple types of carbides M3C, M7C3, M23C6, M6C and MC were observed in the annealed steel. Nucleation and coalescence of new carbides, partial dissolution of original carbides in γ phase region during annealing at 800~840℃, result in ultra-fine carbides. Average size of the carbides is0.33~0.34μm in the steel annealed at 800~840℃. Because M3C and M23C6 dissolve easily in austenite, the high hardness HRC63~65 can be obtained by quenching at 840~860℃. Un-dissolved carbides M6C and MC (VC) can effectively prevent the coarsening of austenitic grain, and conduce to obtain very fine martensite. The retained austenite can be easy to decompose during tempering at low and middle temperature due to the precipitation of multiple types of carbides and the good tempering-resistance of the steel is obtained. The microstructure and property of the steel after heat treatment can be accurately explained by calculating based on phase equilibrium thermodynamic.Key Words: 8CrWMoV steel, ultra-fine carbide, heat treatment, microstructure,
文摘The changes of tempering microstructure and properties of Fe-Cr-V-Ni-Mn-C cast alloys with martensite matrix and much retained austenite are studied. The results showed that when tempering at 200 °C the amount of retained austenite in the alloys is so much that is nearly to as-cast, and a lot of retained austenite decomposes when tempering at 350°C and the retained austenite decomposes almost until tempering at 560 °C. When tempering at 600 °C, the retained austenite in the alloys all decomposes. At 560°C the hardness is highest due to secondary hardening. The effect of nickel and manganese on the microstructure and properties of Fe-Cr-V-C cast alloy were also studied. The results show that the Fe-Cr-V-C cast alloy added nickel and manganese can obtain martensite matrix and much retained austenite microstructure, and nickel can also prevent pearlite transformation. With the increasing content of nickel and manganese, the hardness of as-cast alloy will decreases gradually, so one can improve the hardness of alloy by tempering process. When the content of nickel and manganese is 1.3-1.7%, the hardness of secondary hardening is the highest (HRC64). But when the content of nickel and manganese increase continually, the hardness of secondary hardening is low slightly, and the tempering temperature of secondary hardening rises.
文摘The adhesion and the fracture toughness of thermally grown oxide scales for pure nickel were investigated using Vickers indentation technique. The nickel samples were oxidised at 1200°C for 100h-600h. The crack length induced by Vickers indentation test at NiO/Ni interface increases linearly with the incresing of the applied load in a logarithmic scale for each oxide thickness. There is a critical load Pc, when the applied load P>PC, the crack is produced at the oxide/metal interface. The critical load PC decreases with the increasing of the oxide thickness. Therefore, the relation between the critical load PC and the oxide thickness ho may be used as describing the adhesion of of thermally grown oxide scales. For pure nickel, the Pc-ho relation can be represented by the equation Pc = 761439e"°’°695’1" The fracture toughness in oxide and at the interface decrease with the increasing of the oxide thickness in equation K0 —1.02l4Ln(h0) + 7.3382 (in oxide) and KJ = 529.7In,,"**424 (at the interface). And there is a higher fracture toughness at the NiO/Ni interface. Therefore, for pure nickel, the oxide/metal interface is stronger than the oxide.