Hexagonal gallium nitride films were successfully fabricated throughammoniating Ga_2O_3 films deposited on silicon (111) substrates by electrophoresis. The structure,composition, and surface morphology of the formed f...Hexagonal gallium nitride films were successfully fabricated throughammoniating Ga_2O_3 films deposited on silicon (111) substrates by electrophoresis. The structure,composition, and surface morphology of the formed films were characterized by X-ray diffraction(XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and transmissionelectron microscopy (TEM). The measurement results reveal that the polycrystalline GaN films withhexagonal wurtzite structure were successfully grown on the silicon (111) substrates. Preliminaryresults suggest that varying the ammoniating temperature has obvious effect on the quality of theGaN films formed with this method.展开更多
Self-organized In 0.5 Ga 0.5 As/GaAs quantum island structure emitting at 1.35 μm at room temperature has been successfully fabricated by molecular beam epitaxy (MBE) via cycled (InAs) 1/(GaAs) 1 monolayer deposition...Self-organized In 0.5 Ga 0.5 As/GaAs quantum island structure emitting at 1.35 μm at room temperature has been successfully fabricated by molecular beam epitaxy (MBE) via cycled (InAs) 1/(GaAs) 1 monolayer deposition method. Photoluminescence (PL) measurement shows that very narrow PL linewidth of 19.2 meV at 300 K has been reached for the first time, indicating effective suppression of inhomogeneous broadening of optical emission from the In 0.5 Ga 0.5 As islands structure. Our results provide important information for optimizing the epitaxial structures of 1.3 μm wavelength quantum dot (QD) devices.展开更多
The simulation and analysis of S-shaped waveguide bend are presented.Bend radius larger than 30 mm assures less than 0.5 dB radiation loss for a 4-μm-wide silicon-on-insulator waveguide bend with 2-μm etch depth.Int...The simulation and analysis of S-shaped waveguide bend are presented.Bend radius larger than 30 mm assures less than 0.5 dB radiation loss for a 4-μm-wide silicon-on-insulator waveguide bend with 2-μm etch depth.Intersection angle greater than 20° provides negligible crosstalk (<-30 dB) and very low insertion loss.Any reduction in bend radius and intersection angle is at the cost of the degradation of characteristics of bent waveguide and intersecting waveguide, respectively.展开更多
Based on the idea of tilting a photoelectric conversion device,the monocrystalline silicon p-n junction device was tilted to make light incident upon the device at an angle of 45° with the normal of the device su...Based on the idea of tilting a photoelectric conversion device,the monocrystalline silicon p-n junction device was tilted to make light incident upon the device at an angle of 45° with the normal of the device surface,resulting in infrared multiple-internal-reflection inside the device.The internal reflection leads to path length increase of infrared light,making the enhancement of infrared absorption of the device.An increase of 11% in energy conversion efficiency has been obtained through tilting the device.展开更多
The purpose of this article is to examine the methods and equipment for abating waste gases and water produced during the manufacture of semiconductor materials and devices. Three separating methods and equipment are ...The purpose of this article is to examine the methods and equipment for abating waste gases and water produced during the manufacture of semiconductor materials and devices. Three separating methods and equipment are used to control three different groups of electronic wastes. The first group includes arsine and phosphine emitted during the processes of semiconductor materials manufacture. The abatement procedure for this group of pollutants consists of adding iodates, cupric and manganese salts to a multiple shower tower (MST) structure. The second group includes pollutants containing arsenic, phosphorus, HF, HCl, NO 2, and SO 3 emitted during the manufacture of semiconductor materials and devices. The abatement procedure involves mixing oxidants and bases in an oval column with a separator in the middle. The third group consists of the ions of As, P and heavy metals contained in the waste water. The abatement procedure includes adding CaCO 3 and ferric salts in a flocculation sedimentation compact device equipment. Test results showed that all waste gases and water after the abatement procedures presented in this article passed the discharge standards set by the State Environmental Protection Administration of China.展开更多
A rearrangeable nonblocking silicon-on-insulator-based thermo-optic 4x4 switch matrix with spot size converters (SSCs) and a new driving circuit are designed and fabricated. The introduction of a spot size converter...A rearrangeable nonblocking silicon-on-insulator-based thermo-optic 4x4 switch matrix with spot size converters (SSCs) and a new driving circuit are designed and fabricated. The introduction of a spot size converter (SSC) has decreased the insertion loss to less than 10dB and the new driving circuit has improved the response speed to less than l^s.展开更多
基金This work is financially supported by the Key Research Program of National Natural Science Foundation of China (No. 90201025)the National Natural Science Foundation of China (No. 60071006)
文摘Hexagonal gallium nitride films were successfully fabricated throughammoniating Ga_2O_3 films deposited on silicon (111) substrates by electrophoresis. The structure,composition, and surface morphology of the formed films were characterized by X-ray diffraction(XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and transmissionelectron microscopy (TEM). The measurement results reveal that the polycrystalline GaN films withhexagonal wurtzite structure were successfully grown on the silicon (111) substrates. Preliminaryresults suggest that varying the ammoniating temperature has obvious effect on the quality of theGaN films formed with this method.
文摘Self-organized In 0.5 Ga 0.5 As/GaAs quantum island structure emitting at 1.35 μm at room temperature has been successfully fabricated by molecular beam epitaxy (MBE) via cycled (InAs) 1/(GaAs) 1 monolayer deposition method. Photoluminescence (PL) measurement shows that very narrow PL linewidth of 19.2 meV at 300 K has been reached for the first time, indicating effective suppression of inhomogeneous broadening of optical emission from the In 0.5 Ga 0.5 As islands structure. Our results provide important information for optimizing the epitaxial structures of 1.3 μm wavelength quantum dot (QD) devices.
文摘The simulation and analysis of S-shaped waveguide bend are presented.Bend radius larger than 30 mm assures less than 0.5 dB radiation loss for a 4-μm-wide silicon-on-insulator waveguide bend with 2-μm etch depth.Intersection angle greater than 20° provides negligible crosstalk (<-30 dB) and very low insertion loss.Any reduction in bend radius and intersection angle is at the cost of the degradation of characteristics of bent waveguide and intersecting waveguide, respectively.
文摘Based on the idea of tilting a photoelectric conversion device,the monocrystalline silicon p-n junction device was tilted to make light incident upon the device at an angle of 45° with the normal of the device surface,resulting in infrared multiple-internal-reflection inside the device.The internal reflection leads to path length increase of infrared light,making the enhancement of infrared absorption of the device.An increase of 11% in energy conversion efficiency has been obtained through tilting the device.
文摘The purpose of this article is to examine the methods and equipment for abating waste gases and water produced during the manufacture of semiconductor materials and devices. Three separating methods and equipment are used to control three different groups of electronic wastes. The first group includes arsine and phosphine emitted during the processes of semiconductor materials manufacture. The abatement procedure for this group of pollutants consists of adding iodates, cupric and manganese salts to a multiple shower tower (MST) structure. The second group includes pollutants containing arsenic, phosphorus, HF, HCl, NO 2, and SO 3 emitted during the manufacture of semiconductor materials and devices. The abatement procedure involves mixing oxidants and bases in an oval column with a separator in the middle. The third group consists of the ions of As, P and heavy metals contained in the waste water. The abatement procedure includes adding CaCO 3 and ferric salts in a flocculation sedimentation compact device equipment. Test results showed that all waste gases and water after the abatement procedures presented in this article passed the discharge standards set by the State Environmental Protection Administration of China.
基金Supported in part by the National Key Basic Research Special Foundation of China under Grant No. G2000-03-66the Na-tional High Technology Program of China under Grant No.2002AA312060the National Natural Science Foundation ofChina under Grant No. 60336010.
文摘A rearrangeable nonblocking silicon-on-insulator-based thermo-optic 4x4 switch matrix with spot size converters (SSCs) and a new driving circuit are designed and fabricated. The introduction of a spot size converter (SSC) has decreased the insertion loss to less than 10dB and the new driving circuit has improved the response speed to less than l^s.