期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Integrated gravity and magnetic study on patterns of petroleum basin occurrence in the China seas and adjacent areas 被引量:3
1
作者 Tao He Wanyin Wang +3 位作者 Zhizhao Bai Xingang Luo Jing Ma Yimi Zhang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第3期201-214,共14页
The China seas and adjacent areas contain numerous petroleum basins.One of the main challenges for future oil and gas exploration is to identify the inherent patterns of petroleum basin distribution.The formation and ... The China seas and adjacent areas contain numerous petroleum basins.One of the main challenges for future oil and gas exploration is to identify the inherent patterns of petroleum basin distribution.The formation and evolution of petroleum basins along with the migration and accumulation of oil and gas are often closely related to the tectonic environment.The gravity and magnetic fields with high lateral resolution and wide coverage provide important data for regional tectonic research.Based on the gravity data in the Global Satellite Gravity Anomaly Database(V31.1)and magnetic data from the Earth Magnetic Anomaly Grid(2-arc-minute resolution)(V2),this study uses integrated gravity and magnetic field technique to obtain integrated gravity and magnetic field result for the China seas and adjacent areas,and then adopts the normalized vertical derivative of the total horizontal derivative technique to conduct partition.Finally,it identifies the relationship between the partition characteristics and tectonics as well as the patterns of petroleum basin occurrence.The research shows that the partition of gravity and magnetic field integrated result has a good correlation with the Neo-Cathaysian tectonic system and tectonic units.The petroleum basins are characterized according to three blocks arranged from north to south and four zones arranged from east to west.The north-south block structure causes the uneven distribution of oil and gas resources in the mainland area and the differences in the hydrocarbon-bearing strata.Petroleum basins are more abundant in the north than in the south.The ages of the main oil-and gas-bearing strata are“Paleozoic–Mesozoic,Paleozoic–Mesozoic–Cenozoic,and Paleozoic–Mesozoic”,in order from north to south.The difference in the overall type of oil and gas resources in all basins is controlled by the east–west zonation.From east to west,the oil and gas resource type exhibits a wave-like pattern of“oil and gas,gas,oil and gas,gas”.The vertical distribution is characterized by an upper oil(Mesozoic–Cenozoic)and lower gas(Mesozoic–Paleozoic)structure.Within the study area,the Paleozoic marine strata should be the main strata of future natural gas exploration. 展开更多
关键词 China seas petroleum basins integrated gravity and magnetic field technique partition characteristics three blocks four zones
下载PDF
Study on the distribution characteristics of faults and their control over petroliferous basins in the China seas and its adjacent areas 被引量:3
2
作者 Xin’gang Luo Wanyin Wang +5 位作者 Ying Chen Zhizhao Bai Dingding Wang Tao He Yimi Zhang Ruiyun Ma 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第3期227-242,共16页
As one of the main controlling factors of oil and gas accumulation,faults are closely related to the distribution of oil and gas reservoirs.Studying how faults control petroliferous basins is particularly important.In... As one of the main controlling factors of oil and gas accumulation,faults are closely related to the distribution of oil and gas reservoirs.Studying how faults control petroliferous basins is particularly important.In this work,we investigated the plane positions of major faults in the China seas and its adjacent areas using the normalized vertical derivative of the total horizontal derivative(NVDR-THDR)of the Bouguer gravity anomaly,the fusion results of gravity and magnetic anomalies,and the residual Bouguer gravity anomaly.The apparent depths of major faults in the China seas and its adjacent areas were inverted using the Tilt-Euler method based on the Bouguer gravity anomaly.The results show that the strikes of the faults in the China seas and its adjacent areas are mainly NE and NW,followed by EW,and near-SN.Among them,the lengths of most ultra-crustal faults are in the range of 1000–3000 km,and their apparent depths lie between 10 km and 40 km.The lengths of crustal faults lie between 300 km and 1000 km,and their apparent depths are between 0 km and 20 km.According to the plane positions and apparent depths of the faults,we put forward the concept of fault influence factor for the first time.Based on this factor,the key areas for oil and gas exploration were found as follows:the east of South North China Basin in the intracontinental rift basins;the southeast region of East China Sea Shelf Basin,the Taixinan and Qiongdongnan basins in the continental margin rift basins;Zhongjiannan Basin in the strike-slip pull-apart basins;the Liyue,Beikang,and the Nanweixi basins in the rifted continental basins.This work provides valuable insights into oil and gas exploration,mineral resource exploration,and deep geological structure research in the China seas and its adjacent areas. 展开更多
关键词 China seas gravity and magnetic anomalies plane positions of faults apparent depths of faults oil and gas basins
下载PDF
Influence of the Moho surface distribution on the oil and gas basins in China seas and adjacent areas 被引量:4
3
作者 Yimi Zhang Wanyin Wang +5 位作者 Linzhi Li Xingang Luo Dingding Wang Tao He Feifei Zhang Jing Ma 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第3期167-188,共22页
Owing to the strategic significance of national oil and gas resources,their exploration and production must be prioritized in China.Oil and gas resources are closely related to deep crustal structures,and Moho charact... Owing to the strategic significance of national oil and gas resources,their exploration and production must be prioritized in China.Oil and gas resources are closely related to deep crustal structures,and Moho characteristics influence oil and gas distribution.Therefore,it is important to study the relationship between the variation of the Moho surface depth undulation and hydrocarbon basins for the future prediction of their locations.The Moho depth in the study area can be inverted using the Moho depth control information,the Moho gravity anomaly,and the variable density distribution calculated by the infinite plate.Based on these results,the influences of Moho characteristics on petroleum basins were studied.We found that the Moho surface depth undulation deviation and crustal thickness undulation deviation in the hydrocarbon-rich basins are large,and the horizontal gradient deviation of the Moho surface shows a positive linear relationship with oil and gas resources in the basin.The oil-bearing mechanism of the Moho basin is further discussed herein.The Moho uplift area and the slope zone correspond to the distribution of oil and gas fields.The tensile stress produced by the Moho uplift can form tensile fractures or cause tensile fractures on the surface,further developing into a fault or depression basin that receives deposits.The organic matter can become oil and natural gas under suitable chemical and structural conditions.Under the action of groundwater or other dynamic forces,oil and natural gas are gradually transported to the uplift or the buried hill in the depression zone,and oil and gas fields are formed under the condition of good caprock.The research results can provide new insights into the relationship between deep structures and oil and gas basins as well as assist in the strategic planning of oil and gas exploration activities. 展开更多
关键词 China Seas and adjacent areas Moho surface oil and gas basins
下载PDF
Relationship between the Extent of Igneous Rocks and Deep Structures as Determined by Gravitational and Magnetic Data in the South China Sea 被引量:1
4
作者 YANG Min WANG Wanyin +1 位作者 ZHANG Gongcheng MA Jie 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2021年第1期294-304,共11页
The distribution of oil and gas resources in the South China Sea and adjacent areas is closely related to the structural pattern that helped to define the controlling effect of deep processes on oil-bearing basins.Ign... The distribution of oil and gas resources in the South China Sea and adjacent areas is closely related to the structural pattern that helped to define the controlling effect of deep processes on oil-bearing basins.Igneous rocks can record important information from deep processes.Deep structures such as faults,basin uplift and depression,Cenozoic basement and magnetic basement are all the results of energy exchange within the earth.The study of the relationship between igneous rocks and deep structures is of great significance for the study of the South China Sea.By using the minimum curvature potential field separation technique and the correlation analysis technique of gravitational and magnetic anomalies,the fusion of gravitational and magnetic data reflecting igneous rocks can be obtained,through which the igneous rocks with high susceptibility/high density or high susceptibility/low density can be identified.In this study area,igneous rocks do not develop in the Yinggehai basin,Qiongdongnan basin,Zengmu basin and Brunei-Sabah basin whilst igneous rocks with high susceptibility/high density or high susceptibility/low density are widely-developed in other basins.In undeveloped igneous areas,faults are also undeveloped the Cenozoic thickness is greater,the magnetic basement depth is greater and the Cenozoic thickness is highly positively correlated with the magnetic basement depth.In igneously developed regions,the distribution pattern of the Qiongtai block is mainly controlled by primary faults,while the distribution of the Zhongxisha block,Xunta block and Yongshu-Taiping block is mainly controlled by secondary faults,the Cenozoic thickness having a low correlation with the depth of the magnetic basement. 展开更多
关键词 igneous rocks fusion of gravity and magnetic data deep structures South China Sea
下载PDF
Study on System of Faults in the Gulf of Mexico and Adjacent Region based on Gravity Data
5
作者 MA Jie WANG Wanyin +4 位作者 DU Xiangdong LUO Xingang CAI Wenjie YANG Min WANG Dingding 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2021年第1期305-318,共14页
In the Gulf of Mexico and adjacent landmasses,faults are very complex,and their distribution is closely related to plate tectonics,ocean-land boundary,and former structure.The plane position of the faults can be ident... In the Gulf of Mexico and adjacent landmasses,faults are very complex,and their distribution is closely related to plate tectonics,ocean-land boundary,and former structure.The plane position of the faults can be identified by the maximum characteristic of the vertical derivative of the normalized vertical derivative of the total horizontal derivative(NVDR-THDR)of the Bouguer gravity anomaly.The apparent depth of the faults is inverted by the Bouguer gravity anomaly curvature property.Based on tectonic evolutionary processes and the plane distribution and apparent depth characteristics of the faults,a complete fault system for the Gulf of Mexico and adjacent areas has been established,including 102 faults.The apparent depths of 33 first-class faults are 16-20 km and for 69 second-class faults are 12-16 km.The F_(1-2)and F_(1-3)subduction fault zones are two caused by the subduction of the Cocos Plate into the old Yucatan and Chorti landmasses;F_(1-11)and F_(1-12)fault zones extend westward to the coast of Guatemala and do not extend into the continent;F_(1-17)and F_(1-20)faults,which control the boundary of the oceanic crust,do not extend southward into the continent.The fault system,which radiates in a"fan-shaped"structure as a whole,unfolds to the northeast.Faults of different nature and sizes are distributed in the Cocos Plate subduction zone,Continental,Gulf of Mexico,Yucatan old landmass and Caribbean Plate in NW,NNW,NS,NE and NEE directions.In the Gulf of Mexico region,the fault system is a comprehensive reflection of former tectonic movements,such as plate movement,drift of old landmasses and expansion of oceanic crusts.The first-class faults control the plate and ocean-continental boundaries.The second-class faults are subordinate to the first-class faults or related to the distribution of different sedimentary layers. 展开更多
关键词 structural geology TECTONISM gravity anomaly fault distribution and apparent depth Gulf of Mexico region
下载PDF
Reassessment of the Distribution of Mantle CO_(2) in the Bohai Sea,China:The Perspective from the Source and Pathway System 被引量:3
6
作者 TANG Huafeng GUO Tianchan +4 位作者 WU Keqiang LIU Zilin XU Jianyong LU Baoliang WANG Pujun 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2022年第1期337-347,共11页
Research on the distribution of mantle CO_(2)should involve comprehensive analysis from CO_(2)source to accumulation.The crust-mantle pathway system is the key controlling factor of the distribution of mantle CO_(2),b... Research on the distribution of mantle CO_(2)should involve comprehensive analysis from CO_(2)source to accumulation.The crust-mantle pathway system is the key controlling factor of the distribution of mantle CO_(2),but has received little attention.The pathway system and controlling factors of CO_(2)distribution in the Bohai Sea are analyzed using data on fault styles and information on the mantle and lithosphere.The relation between volcanic rocks and the distribution of mantle CO_(2)is reassessed using age data for CO_(2)accumulations.The distribution of mantle CO_(2)is controlled by uplift of the asthenosphere and upper mantle,magma conduits in the mantle and fault systems in the crust.Uplifted regions of the asthenosphere are accumulation areas for CO_(2).The area with uplift of the Moho exhibits accumulation of mantle CO_(2)at depth.CO_(2)was mainly derived from vertical migration through the upper mantle and lower crust.The fault style in the upper crust controls the distance of horizontal migration and the locations of CO_(2)concentrations.The distribution of mantle CO_(2)and volcanic rocks are not the same,but both probably followed the same pathways sometimes.Mantle CO_(2)in the Bohai Sea is concentrated in the Bozhong sag and the surrounding area,particularly in a trap that formed before 5.1 Ma and is connected to crustal faults(the Bozhang faults)and lithospheric faults(the Tanlu faults). 展开更多
关键词 mantle CO_(2) source area pathway system fault MOHO Bohai Sea
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部