期刊文献+
共找到253篇文章
< 1 2 13 >
每页显示 20 50 100
Novel insights into D-Pinitol based therapies:a link between tau hyperphosphorylation and insulin resistance 被引量:2
1
作者 Dina Medina-Vera Antonio Jesús López-Gambero +4 位作者 Juan Antonio Navarro Carlos Sanjuan Elena Baixeras Juan Decara Fernando Rodríguez de Fonseca 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第2期289-295,共7页
Alzheimer’s disease is a neurodegenerative disorder characterized by the amyloid accumulation in the brains of patients with Alzheimer’s disease.The pathogenesis of Alzheimer’s disease is mainly mediated by the pho... Alzheimer’s disease is a neurodegenerative disorder characterized by the amyloid accumulation in the brains of patients with Alzheimer’s disease.The pathogenesis of Alzheimer’s disease is mainly mediated by the phosphorylation and aggregation of tau protein.Among the multiple causes of tau hyperphosphorylation,brain insulin resistance has generated much attention,and inositols as insulin sensitizers,are currently considered candidates for drug development.The present narrative review revises the interactions between these three elements:Alzheimer’s disease-tau-inositols,which can eventually identify targets for new disease modifiers capable of bringing hope to the millions of people affected by this devastating disease. 展开更多
关键词 Alzheimer’s disease cyclin-dependent kinase 5 diabetes D-PINITOL inositols insulin resistance KINASES PHOSPHORYLATION PI3K/Akt tau
下载PDF
Role of lipids in the control of autophagy and primary cilium signaling in neurons 被引量:1
2
作者 María Paz Hernández-Cáceres Daniela Pinto-Nuñez +5 位作者 Patricia Rivera Paulina Burgos Francisco Díaz-Castro Alfredo Criollo Maria Jose Yañez Eugenia Morselli 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第2期264-271,共8页
The brain is,after the adipose tissue,the organ with the greatest amount of lipids and diversity in their composition in the human body.In neurons,lipids are involved in signaling pathways controlling autophagy,a lyso... The brain is,after the adipose tissue,the organ with the greatest amount of lipids and diversity in their composition in the human body.In neurons,lipids are involved in signaling pathways controlling autophagy,a lysosome-dependent catabolic process essential for the maintenance of neuronal homeostasis and the function of the primary cilium,a cellular antenna that acts as a communication hub that transfers extracellular signals into intracellular responses required for neurogenesis and brain development.A crosstalk between primary cilia and autophagy has been established;however,its role in the control of neuronal activity and homeostasis is barely known.In this review,we briefly discuss the current knowledge regarding the role of autophagy and the primary cilium in neurons.Then we review the recent literature about specific lipid subclasses in the regulation of autophagy,in the control of primary cilium structure and its dependent cellular signaling in physiological and pathological conditions,specifically focusing on neurons,an area of research that could have major implications in neurodevelopment,energy homeostasis,and neurodegeneration. 展开更多
关键词 autophagic flux CHOLESTEROL fatty acids GPCR lysosomal storage diseases NEURONS NPC1 PHOSPHOINOSITIDES primary cilium
下载PDF
Resilience to structural and molecular changes in excitatory synapses in the hippocampus contributes to cognitive function recovery in Tg2576 mice
3
作者 Carolina Aguado Sara Badesso +7 位作者 JoséMartínez-Hernández Alejandro Martín-Belmonte Rocío Alfaro-Ruiz Miriam Fernández Ana Esther Moreno-Martínez Mar Cuadrado-Tejedor Ana García-Osta Rafael Luján 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第9期2068-2074,共7页
Plaques of amyloid-β(Aβ)and neurofibrillary tangles are the main pathological characteristics of Alzheimer’s disease(AD).However,some older adult people with AD pathological hallmarks can retain cognitive function.... Plaques of amyloid-β(Aβ)and neurofibrillary tangles are the main pathological characteristics of Alzheimer’s disease(AD).However,some older adult people with AD pathological hallmarks can retain cognitive function.Unraveling the factors that lead to this cognitive resilience to AD offers promising prospects for identifying new therapeutic targets.Our hypothesis focuses on the contribution of resilience to changes in excitatory synapses at the structural and molecular levels,which may underlie healthy cognitive performance in aged AD animals.Utilizing the Morris Water Maze test,we selected resilient(asymptomatic)and cognitively impaired aged Tg2576 mice.While the enzyme-linked immunosorbent assay showed similar levels of Aβ42 in both experimental groups,western blot analysis revealed differences in tau pathology in the pre-synaptic supernatant fraction.To further investigate the density of synapses in the hippocampus of 16-18 month-old Tg2576 mice,we employed stereological and electron microscopic methods.Our findings indicated a decrease in the density of excitatory synapses in the stratum radiatum of the hippocampal CA1 in cognitively impaired Tg2576 mice compared with age-matched resilient Tg2576 and non-transgenic controls.Intriguingly,through quantitative immunoelectron microscopy in the hippocampus of impaired and resilient Tg2576 transgenic AD mice,we uncovered differences in the subcellular localization of glutamate receptors.Specifically,the density of GluA1,GluA2/3,and mGlu5 in spines and dendritic shafts of CA1 pyramidal cells in impaired Tg2576 mice was significantly reduced compared with age-matched resilient Tg2576 and non-transgenic controls.Notably,the density of GluA2/3 in resilient Tg2576 mice was significantly increased in spines but not in dendritic shafts compared with impaired Tg2576 and non-transgenic mice.These subcellular findings strongly support the hypothesis that dendritic spine plasticity and synaptic machinery in the hippocampus play crucial roles in the mechanisms of cognitive resilience in Tg2576 mice. 展开更多
关键词 aging Alzheimer´s disease COGNITIVE HIPPOCAMPUS immunoelectron microscopy RESILIENCE SYNAPSE
下载PDF
Interplay between mesenchymal stromal cells and the immune system after transplantation: implications for advanced cell therapy in the retina
4
作者 María Norte-Muñoz David García-Bernal +2 位作者 Diego García-Ayuso Manuel Vidal-Sanz Marta Agudo-Barriuso 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第3期542-547,共6页
Advanced mesenchymal stromal cell-based therapies for neurodegenerative diseases are widely investigated in preclinical models.Mesenchymal stromal cells are well positioned as therapeutics because they address the und... Advanced mesenchymal stromal cell-based therapies for neurodegenerative diseases are widely investigated in preclinical models.Mesenchymal stromal cells are well positioned as therapeutics because they address the underlying mechanisms of neurodegeneration,namely trophic factor deprivation and neuroinflammation.Most studies have focused on the beneficial effects of mesenchymal stromal cell transplantation on neuronal survival or functional improvement.However,little attention has been paid to the interaction between mesenchymal stromal cells and the host immune system due to the immunomodulatory properties of mesenchymal stromal cells and the long-held belief of the immunoprivileged status of the central nervous system.Here,we review the crosstalk between mesenchymal stromal cells and the immune system in general and in the context of the central nervous system,focusing on recent work in the retina and the importance of the type of transplantation. 展开更多
关键词 adaptive immunity cell therapy central nervous system immune system innate immunity mesenchymal stromal cells NEUROREGENERATION preclinical studies RETINA TRANSPLANTATION
下载PDF
The dorsal root ganglion as a target for neurorestoration in neuropathic pain
5
作者 Guillermo Estivill-Torrús Ana Belen Martínez-Padilla +2 位作者 Lourdes Sánchez-Salido Anne Baron-Van Evercooren Beatriz García-Díaz 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第2期296-301,共6页
Neuropathic pain is a severe and chronic condition widely found in the general population.The reason for this is the extensive variety of damage or diseases that can spark this unpleasant constant feeling in patients.... Neuropathic pain is a severe and chronic condition widely found in the general population.The reason for this is the extensive variety of damage or diseases that can spark this unpleasant constant feeling in patients.During the processing of pain,the dorsal root ganglia constitute an important region where dorsal root ganglion neurons play a crucial role in the transmission and propagation of sensory electrical stimulation.Furthermore,the dorsal root ganglia have recently exhibited a regenerative capacity that should not be neglected in the understanding of the development and resolution of neuropathic pain and in the elucidation of innovative therapies.Here,we will review the complex interplay between cells(satellite glial cells and inflammatory cells)and factors(cytokines,neurotrophic factors and genetic factors)that takes place within the dorsal root ganglia and accounts for the generation of the aberrant excitation of primary sensory neurons occurring in neuropathic pain.More importantly,we will summarize an updated view of the current pharmacologic and nonpharmacologic therapies targeting the dorsal root ganglia for the treatment of neuropathic pain. 展开更多
关键词 CYTOKINES dorsal root ganglia genetic factors neuropathic pain neurotrophic factors pharmacologic and nonpharmacologic therapies satellite glial cells sensory neurons
下载PDF
Blockade of Rho-associated kinase prevents inhibition of axon regeneration of peripheral nerves induced by anti-ganglioside antibodies
6
作者 Andrés Berardo Cristian R.Bacaglio +3 位作者 Bárbara B.Báez Rubén Sambuelli Kazim A.Sheikh Pablo H.H.Lopez 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第4期895-899,共5页
Anti-ganglioside antibodies are associated with delayed/poor clinical recovery in Guillain-Barrèsyndrome,mostly related to halted axon regeneration.Cross-linking of cell surface gangliosides by anti-ganglioside a... Anti-ganglioside antibodies are associated with delayed/poor clinical recovery in Guillain-Barrèsyndrome,mostly related to halted axon regeneration.Cross-linking of cell surface gangliosides by anti-ganglioside antibodies triggers inhibition of nerve repair in in vitro and in vivo paradigms of axon regeneration.These effects involve the activation of the small GTPase Rho A/ROCK signaling pathways,which negatively modulate growth cone cytoskeleton,similarly to well stablished inhibitors of axon regeneration described so far.The aim of this work was to perform a proof of concept study to demonstrate the effectiveness of Y-27632,a selective pharmacological inhibitor of ROCK,in a mouse model of axon regeneration of peripheral nerves,where the passive immunization with a monoclonal antibody targeting gangliosides GD1a and GT1b was previously reported to exert a potent inhibitory effect on regeneration of both myelinated and unmyelinated fibers.Our results demonstrate a differential sensitivity of myelinated and unmyelinated axons to the pro-regenerative effect of Y-27632.Treatment with a total dosage of 9 mg/kg of Y-27632 resulted in a complete prevention of anti-GD1a/GT1b monoclonal antibody-mediated inhibition of axon regeneration of unmyelinated fibers to skin and the functional recovery of mechanical cutaneous sensitivity.In contrast,the same dose showed toxic effects on the regeneration of myelinated fibers.Interestingly,scale down of the dosage of Y-27632 to 5 mg/kg resulted in a significant although not complete recovery of regenerated myelinated axons exposed to anti-GD1a/GT1b monoclonal antibody in the absence of toxicity in animals exposed to only Y-27632.Overall,these findings confirm the in vivo participation of Rho A/ROCK signaling pathways in the molecular mechanisms associated with the inhibition of axon regeneration induced by anti-GD1a/GT1b monoclonal antibody.Our findings open the possibility of therapeutic pharmacological intervention targeting Rho A/Rock pathway in immune neuropathies associated with the presence of anti-ganglioside antibodies and delayed or incomplete clinical recovery after injury in the peripheral nervous system. 展开更多
关键词 anti-ganglioside antibodies anti-glycan antibodies axon regeneration GANGLIOSIDE Guillain-Barrésyndrome nerve repair ROCK Y-27632
下载PDF
Taurine: a promising nutraceutic in the prevention of retinal degeneration
7
作者 Diego García-Ayuso Johnny Di Pierdomenico +3 位作者 Ana Martínez-Vacas Manuel Vidal-Sanz Serge Picaud María PVillegas-Pérez 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第3期606-610,共5页
Taurine is considered a non-essential amino acid because it is synthesized by most mammals.However,dietary intake of taurine may be necessary to achieve the physiological levels required for the development,maintenanc... Taurine is considered a non-essential amino acid because it is synthesized by most mammals.However,dietary intake of taurine may be necessary to achieve the physiological levels required for the development,maintenance,and function of certain tissues.Taurine may be especially important for the retina.The concentration of taurine in the retina is higher than that in any other tissue in the body and taurine deficiency causes retinal oxidative stress,apoptosis,and degeneration of photoreceptors and retinal ganglion cells.Low plasma taurine levels may also underlie retinal degeneration in humans and therefore,taurine administration could exert retinal neuroprotective effects.Taurine has antioxidant,anti-apoptotic,immunomodulatory,and calcium homeostasis-regulatory properties.This review summarizes the role of taurine in retinal health and disease,where it appears that taurine may be a promising nutraceutical. 展开更多
关键词 amino acid ANTI-INFLAMMATORY ANTIOXIDANT gamma-aminobutyric acid NUTRACEUTICAL photoreceptor degeneration RETINA retinitis pigmentosa TAURINE
下载PDF
A texture-modified dessert with high nutritional value designed for people with dysphagia:effect of refrigeration and frozen storage
8
作者 María Cartagena Larisa Giura +1 位作者 Diana Ansorena Iciar Astiasaran 《Food Science and Human Wellness》 SCIE CSCD 2024年第1期462-471,共10页
Dysphagia is commonly associated with malnutrition and an increased choking risk.To overcome these complications,food designed for people with dysphagia should have an appropriate texture and a high nutritional value.... Dysphagia is commonly associated with malnutrition and an increased choking risk.To overcome these complications,food designed for people with dysphagia should have an appropriate texture and a high nutritional value.In this study,six formulations of a strawberry dessert enriched in protein(calcium caseinate)and fiber(wheat dextrin or inulin)were developed using different hydrocolloids(xanthan gum,carboxymethyl cellulose or modified starch)to provide desirable texture and stability.Nutritional value was calculated and total phenolic content and antioxidant activity of the samples were analyzed.Back-extrusion test,rheological measurements and sensory analysis were performed in refrigerated and frozen samples to characterize their textural and viscoelastic properties.The high content in protein(14.7 g/100 g)and fiber(7.9-8.7 g/100 g)made possible to use the claims“high protein”and“high fiber”.Phytochemicals supplied by strawberries contributed to the antioxidant properties of the dessert.Loss tangent ranged 0.28-0.35 for all the formulations,indicating a weak gel behavior,which could be considered safe to swallow.The formulations with dextrin in combination with carboxymethyl cellulose or xanthan gum seemed to be less susceptible to structural changes during frozen storage.This work provides insights for the development of a nutrient-dense dessert that meets the requirements of people with dysphagia. 展开更多
关键词 MALNUTRITION Texture-modified-food HYDROCOLLOIDS Viscoelastic properties Food texture
下载PDF
Oligodendroctyes:the forgotten players of diabetes pathophysiology
9
作者 Juan Antonio López-Villodres Beatriz García-Díaz 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第11期2349-2350,共2页
Oligodendrocytes(OLs),glial cells that provide myelin sheaths to axons in the central nervous system(CNS),have a dual role.First,this myelin fatty cover around the axons protects the nerves and is crucial for the salt... Oligodendrocytes(OLs),glial cells that provide myelin sheaths to axons in the central nervous system(CNS),have a dual role.First,this myelin fatty cover around the axons protects the nerves and is crucial for the saltatory propagation of action potentials.Second and not less important,OLs provide trophic support to neurons and axons.Thus,OL metabolism is important for OL well-being and the proper accomplishment of their functions,and OL metabolism energetics directly affect the energy metabolism of neighboring neurons. 展开更多
关键词 METABOLISM NERVES MYELIN
下载PDF
Metastatic pancreatic and lung cancer patient in complete remission following immunotherapy: A case report and review of literature
10
作者 Joaquina Martínez-Galán Cristina Jiménez-Luna +5 位作者 Isabel Rodriguez Elisabeth Maza Carlos García-Collado Antonio Rodríguez-Fernández Javier Luis López-Hidalgo Octavio Caba 《World Journal of Gastrointestinal Oncology》 SCIE 2024年第5期2233-2240,共8页
BACKGROUND Metastatic pancreatic ductal adenocarcinoma(PDAC)is a lethal malignancy with dispiriting survival data.Immunotherapy is a promising approach to many cancer types,but achieves poor outcomes in advanced PDAC ... BACKGROUND Metastatic pancreatic ductal adenocarcinoma(PDAC)is a lethal malignancy with dispiriting survival data.Immunotherapy is a promising approach to many cancer types,but achieves poor outcomes in advanced PDAC due to its immunosuppressive tumor microenvironment.We describe a case of metastatic PDAC effectively treated with pembrolizumab.CASE SUMMARY We report the case of a 67-year-old woman with unresectable locally advanced PDAC,treated with gemcitabine plus nab-paclitaxel followed by radiotherapy plus capecitabine.At nine months,pancreatic tumor progression was observed at the level of the hepatic hilum with the appearance of a new pulmonary nodule suggestive of a second primary,confirmed by left lung biopsy.Systemic immunotherapy was then initiated with pembrolizumab,an immune checkpoint inhibitor targeting programmed cell death protein-1 that covers the two tumor types.The patient showed a complete metabolic response that was maintained throughout the treatment.The patient continues to be disease-free at 5.6 years since the start of immunotherapy.CONCLUSION These results suggest that the administration of pembrolizumab after chemoradiotherapy has a beneficial effect in patients with metastatic PDAC.To our knowledge,this is the first reported case of a patient with metastatic PDAC and metastatic lung cancer showing such a long-lasting complete response after pembrolizumab treatment without curative surgery.Further studies are required to determine biomarkers that identify PDAC patients most likely to benefit from this immunotherapy. 展开更多
关键词 Pancreatic ductal adenocarcinoma Lung cancer IMMUNOTHERAPY Pembrolizumab Programmed cell death protein-1 Case report
下载PDF
Targeting epidermal growth factor receptor signaling to facilitate cortical injury repair?
11
作者 Ricardo Gómez-Oliva Pedro Nunez-Abades Carmen Castro 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第5期935-936,共2页
The existence of neural stem cells(NSC)in specific areas of the adult mammalian brain leads to the generation of new neurons involved in homeostatic mechanisms.This is the case of the NSC of the subventricular zone(SV... The existence of neural stem cells(NSC)in specific areas of the adult mammalian brain leads to the generation of new neurons involved in homeostatic mechanisms.This is the case of the NSC of the subventricular zone(SVZ)that produces olfactory bulb(OB)neurons.These neurons integrate into circuits to modulate sensory information and participate in olfactory processing(Bragado Alonso et al.,2019).A series of hierarchical events need to take place to produce OB neurons from NSC of the SVZ.First,the activation of quiescent NSC is necessary to produce intermediate transit amplifying progenitors(TAP),which will generate neuroblasts.The latter are cells that maintain a proliferative phenotype while in an immature phase.However,once they initiate migration toward the OB,they progressively undergo their differentiation into neurons(Kjell et al.,2020). 展开更多
关键词 VENTRICULAR MAINTAIN
下载PDF
Amyloid-beta pathology-induced nanoscale synaptic disruption:the case of the GABA_B-GIRK assembly
12
作者 Rafael Lujan Alejandro Martín-Belmonte +1 位作者 Sergi Ferré Francisco Ciruela 《Neural Regeneration Research》 SCIE CAS 2025年第5期1409-1410,共2页
Alzheimer's disease (AD) is characterized by an imbalance between excitatory and inhibitory brain networks,leading to aberrant homeostatic synaptic plasticity.AD has progressively been recognized as syna ptopathy ... Alzheimer's disease (AD) is characterized by an imbalance between excitatory and inhibitory brain networks,leading to aberrant homeostatic synaptic plasticity.AD has progressively been recognized as syna ptopathy and syna ptic dysfunction has been identified as a key component of its pathogenesis (Schirinzi et al.,2020).Syna ptic dysfunction is believed to precede synapse loss,a primary biological correlate of cognitive decline in AD,inevita bly associated with neuronal death. 展开更多
关键词 ALZHEIMER PATHOLOGY
下载PDF
Woody plant taxonomic,functional,and phylogenetic diversity decrease along elevational gradients in Andean tropical montane forests:Environmental filtering and arrival of temperate taxa
13
作者 Guillermo Bañares-de-Dios Manuel J.Macía +6 位作者 Gabriel Arellano Íñigo Granzow-de la Cerda Julia Vega-álvarez Itziar Arnelas Carlos I.Espinosa Norma Salinas Luis Cayuela 《Plant Diversity》 SCIE CAS CSCD 2024年第4期491-501,共11页
Mountains are paramount for exploring biodiversity patterns due to the mosaic of topographies and climates encompassed over short distances.Biodiversity research has traditionally focused on taxonomic diversity when i... Mountains are paramount for exploring biodiversity patterns due to the mosaic of topographies and climates encompassed over short distances.Biodiversity research has traditionally focused on taxonomic diversity when investigating changes along elevational gradients,but other facets should be considered.For first time,we simultaneously assessed elevational trends in taxonomic,functional,and phylogenetic diversity of woody plants in Andean tropical montane forests and explored their underlying ecological and evolutionary causes.This investigation covered four transects(traversing ca.2200 m a.s.l.) encompassing 114 plots of 0.1 ha across a broad latitudinal range(ca.10°).Using Hill numbers to quantify abundance-based diversity among 37,869 individuals we observed a consistent decrease in taxonomic,functional,and phylogenetic diversity as elevation increased,although the decrease was less pronounced for higher Hill orders.The exception was a slight increase in phylogenetic diversity when dominant species were over-weighted.The decrease in taxonomic and functional diversity might be attributed to an environmental filtering process towards highlands,where the increasingly harsher conditions exclude species and functional strategies.Besides,the differences in steepness decrease between Hill orders suggest that rare species disproportionately contribute to functional diversity.For phylogenetic diversity the shifting elevational trend between Hill orders indicates a greater than previously considered influence in central Andean highlands of tropical lowlands originated species with strong niche conservatism relative to distantly related temperate lineages.This could be explained by a decreasing presence and abundance of temperate,extratropical taxa towards the central Andes relative to northern or southern Andes,where they are more prevalent. 展开更多
关键词 Altitudinal gradients ANDES Environmentalfiltering Out of the Tropical Lowlands Functional rarity Tropical Niche Conservatism
下载PDF
Work Ability Index and Work Ability Score: A Comparation between both Scores in a Persistent COVID-19 Cohort
14
作者 Carmen Muñoz-Ruiperez Diego Alvaredo Rodrigo +3 位作者 Daniel Arroyo-Sánchez Juan Francisco Álvarez Zarallo Ignacio Sánchez-Arcilla Conejo José Lorenzo Bravo Grande 《Occupational Diseases and Environmental Medicine》 2024年第1期49-57,共9页
Aims: The present study aims to compare the assessment of work ability based on the use of the Work Ability Index (WAI) with another questionnaire base only on the use of WAI’s first item, termed as the “Work Abilit... Aims: The present study aims to compare the assessment of work ability based on the use of the Work Ability Index (WAI) with another questionnaire base only on the use of WAI’s first item, termed as the “Work Ability Score” (WAS). Study design: A cohort of 384 Spanish workers included in a Post COVID-19 condition or persistent COVID-19 multicenter research was utilized. Place and Duration of Study: This cohort was enlisted in four hospitals (Hospital Universitario 12 de Octubre, Madrid;Hospital Universitario Virgen Macarena, Sevilla, Andalucía;Hospital Universitario Gregorio Marañón, Madrid and Complejo Asistencial Universitario de Salamanca, Castilla y León), since 2021 until 2022. Methodology: 384 Spanish workers (176 men and 208 women;aged 20 to 70 years) with Post COVID-19 condition or persistent COVID-19 were included. Descriptive analysis of primary scores was conducted. Given the non-normal distribution of data, the Mann-Whitney and Kruskal-Wallis tests were employed. Spearman and Kendall correlations were employed to assess the relationship between WAI and WAS, also used weighted Kappa to estimate the degree agreement between WAI and WAS. Logistic regression models were utilized to study determinants influencing WAI and WAS, categorized as poor or moderate. Results: WAI had an average score of 32.98 (SD = 10.28), whereas WAS had an average of 5.95 (SD = 2.77). Significant differences were observed in both WAI and WAS across the same variables. Strong and statistically significant correlations were evident between WAI and WAS (rs = 0.83, p < 0.001). All the variables used in the logistic regression model (gender, the sector employment, and previous chronic diseases) were statistically significant in both questionnaires. Conclusion: WAS questionnaire could be used as a tool for reliable assessment of work ability among Spanish workers with Post COVID-19 condition or Persistent CO-VID-19. 展开更多
关键词 Work Ability Index Work Ability Score Post COVID-19 Condition Occupational Health Occupational Medicine
下载PDF
Neuroprotective effects of meloxicam on transient brain ischemia in rats:the two faces of anti-inflammatory treatments 被引量:4
15
作者 Irene Fernández Ugidos Paloma González-Rodríguez +5 位作者 María Santos-Galdiano Enrique Font-Belmonte Berta Anuncibay-Soto Diego Pérez-Rodríguez JoséManuel Gonzalo-Orden Arsenio Fernández-López 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第9期1961-1967,共7页
The inflammato ry response plays an important role in neuroprotection and regeneration after ischemic insult.The use of non-ste roidal anti-inflammatory drugs has been a matter of debate as to whether they have benefi... The inflammato ry response plays an important role in neuroprotection and regeneration after ischemic insult.The use of non-ste roidal anti-inflammatory drugs has been a matter of debate as to whether they have beneficial or detrimental effects.In this context,the effects of the anti-inflammatory agent meloxicam have been scarcely documented after stro ke,but its ability to inhibit both cyclooxygenase isoforms(1 and 2) could be a promising strategy to modulate postischemic inflammation.This study analyzed the effect of meloxicam in a transient focal cerebral ischemia model in rats,measuring its neuroprotective effect after 48 hours and 7 days of reperfusion and the effects of the treatment on the glial scar and regenerative events such as the generation of new progenitors in the subventricular zone and axonal sprouting at the edge of the damaged area.We show that meloxicam’s neuroprotective effects remained after 7 days of reperfusion even if its administration was restricted to the two first days after ischemia.Moreover,meloxicam treatment modulated glial scar reactivity,which matched with an increase in axonal sprouting.However,this treatment decreased the formation of neuronal progenitor cells.This study discusses the dual role of anti-inflammatory treatments after stro ke and encourages the careful analysis of both the neuroprotective and the regenerative effects in preclinical studies. 展开更多
关键词 ANTI-INFLAMMATORIES ASTROCYTE axonal sprouting cylinder test DOUBLECORTIN focal brain ischemia glial scar inflammation neuroprotection new neuron generation transient stroke
下载PDF
Pan-retinal ganglion cell markers in mice, rats, and rhesus macaques 被引量:2
16
作者 Francisco M.Nadal-Nicolás Caridad Galindo-Romero +4 位作者 Fernando Lucas-Ruiz Nicholas Marsh-Amstrong Wei Li Manuel Vidal-Sanz Marta Agudo-Barriuso 《Zoological Research》 SCIE CAS CSCD 2023年第1期226-248,共23页
Univocal identification of retinal ganglion cells(RGCs) is an essential prerequisite for studying their degeneration and neuroprotection. Before the advent of phenotypic markers, RGCs were normally identified using re... Univocal identification of retinal ganglion cells(RGCs) is an essential prerequisite for studying their degeneration and neuroprotection. Before the advent of phenotypic markers, RGCs were normally identified using retrograde tracing of retinorecipient areas. This is an invasive technique, and its use is precluded in higher mammals such as monkeys. In the past decade, several RGC markers have been described. Here, we reviewed and analyzed the specificity of nine markers used to identify all or most RGCs, i.e., pan-RGC markers, in rats, mice, and macaques. The best markers in the three species in terms of specificity, proportion of RGCs labeled, and indicators of viability were BRN3A, expressed by vision-forming RGCs, and RBPMS, expressed by vision-and non-vision-forming RGCs. NEUN, often used to identify RGCs, was expressed by non-RGCs in the ganglion cell layer, and therefore was not RGC-specific. γ-SYN, TUJ1, and NF-L labeled the RGC axons, which impaired the detection of their somas in the central retina but would be good for studying RGC morphology. In rats, TUJ1 and NF-L were also expressed by non-RGCs. BM88, ERRβ,and PGP9.5 are rarely used as markers, but they identified most RGCs in the rats and macaques and ERRβ in mice. However, PGP9.5 was also expressed by non-RGCs in rats and macaques and BM88 and ERRβ were not suitable markers of viability. 展开更多
关键词 RGC Optic nerve crush BM88 BRN3A Estrogen-related receptorβ ERRβ NEUN Neurofilament-L PGP9.5 RBPMS γ-SYN βIII-tubulin TUJ1
下载PDF
Peripheral nerve regeneration through nerve conduits evokes differential expression of growth-associated protein-43 in the spinal cord 被引量:1
17
作者 Jesús Chato-Astrain Olga Roda +5 位作者 David Sánchez-Porras Esther Miralles Miguel Alaminos Fernando Campos Óscar Darío García-García Víctor Carriel 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第8期1852-1856,共5页
Growth-associated protein 43 plays a key role in neurite outgrowth through cytoskeleton remodeling.We have previously demonstrated that structural damage of peripheral nerves induces growth-associated protein 43 upreg... Growth-associated protein 43 plays a key role in neurite outgrowth through cytoskeleton remodeling.We have previously demonstrated that structural damage of peripheral nerves induces growth-associated protein 43 upregulation to promote growth cone formation.Conversely,the limited regenerative capacity of the central nervous system due to an inhibitory environment prevents major changes in neurite outgrowth and should be presumably associated with low levels of growth-associated protein 43 expression.However,central alterations due to peripheral nerve damage have never been assessed using the growthassociated protein 43 marker.In this study,we used the tubulization technique to repair 1 cm-long nerve gaps in the rat nerve injury/repair model and detected growth-associated protein 43 expression in the peripheral and central nervous systems.First,histological analysis of the regeneration process confirmed an active regeneration process of the nerve gaps through the conduit from 10 days onwards.The growth-associated protein 43 expression profile varied across regions and follow-up times,from a localized expression to an abundant and consistent expression throughout the regeneration tissue,confirming the presence of an active nerve regeneration process.Second,spinal cord changes were also histologically assessed,and no apparent changes in the structural and cellular organization were observed using routine staining methods.Surprisingly,remarkable differences and local changes appeared in growth-associated protein 43 expression at the spinal cord level,in particular at 20 days post-repair and beyond.Growth-associated protein 43 protein was first localized in the gracile fasciculus and was homogeneously distributed in the left posterior cord.These findings differed from the growth-associated protein 43 pattern observed in the healthy control,which did not express growth-associated protein 43 at these levels.Our results revealed a differential expression in growth-associated protein 43 protein not only in the regenerating nerve tissue but also in the spinal cord after peripheral nerve transection.These findings open the possibility of using this marker to monitor changes in the central nervous system after peripheral nerve injury. 展开更多
关键词 growth-associated protein 43(GAP-43) IMMUNOHISTOCHEMISTRY nerve guide nerve tissue regeneration peripheral nerve repair spinal cord tissue engineering
下载PDF
QTL analysis for ascorbic acid content in strawberry fruit reveals a complex genetic architecture and association with GDP-L-galactose phosphorylase 被引量:1
18
作者 Pilar Muñoz Cristina Castillejo +18 位作者 JoséAntonio Gómez Luis Miranda Silke Lesemann Klaus Olbricht Aurélie Petit Philippe Chartier Annika Haugeneder Johanna Trinkl Luca Mazzoni Agnieszka Masny Edward Zurawicz Freya Maria Rosemarie Ziegler Björn Usadel Wilfried Schwab Béatrice Denoyes Bruno Mezzetti Sonia Osorio JoséFSánchez-Sevilla Iraida Amaya 《Horticulture Research》 SCIE CSCD 2023年第3期136-150,共15页
Strawberry(Fragaria×ananassa)fruits are an excellent source of L-ascorbic acid(AsA),a powerful antioxidant for plants and humans.Identifying the genetic components underlying AsA accumulation is crucial for enhan... Strawberry(Fragaria×ananassa)fruits are an excellent source of L-ascorbic acid(AsA),a powerful antioxidant for plants and humans.Identifying the genetic components underlying AsA accumulation is crucial for enhancing strawberry nutritional quality.Here,we unravel the genetic architecture of AsA accumulation using an F1 population derived from parental lines‘Candonga’and‘Senga Sengana’,adapted to distinct Southern and Northern European areas.To account for environmental effects,the F1 and parental lines were grown and phenotyped in five locations across Europe(France,Germany,Italy,Poland and Spain).Fruit AsA content displayed normal distribution typical of quantitative traits and ranged five-fold,with significant differences among genotypes and environments.AsA content in each country and the average in all of them was used in combination with 6,974 markers for quantitative trait locus(QTL)analysis.Environmentally stable QTLs for AsA content were detected in linkage group(LG)3A,LG 5A,LG 5B,LG 6B and LG 7C.Candidate genes were identified within stable QTL intervals and expression analysis in lines with contrasting AsA content suggested that GDP-L-Galactose Phosphorylase FaGGP(3A),and the chloroplast-located AsA transporter gene FaPHT4;4(7C)might be the underlying genetic factors for QTLs on LG 3A and 7C,respectively.We show that recessive alleles of FaGGP(3A)inherited from both parental lines increase fruit AsA content.Furthermore,expression of FaGGP(3A)was two-fold higher in lines with high AsA.Markers here identified represent a useful resource for efficient selection of new strawberry cultivars with increased AsA content. 展开更多
关键词 STRAW CULTIVAR content
下载PDF
Simultaneous nitrification and autotrophic denitrification in fluidized bed reactors using pyrite and elemental sulfur as electron donors
19
作者 Maria F.Carboni Sonia Arriaga Piet N.L.Lens 《Water Science and Engineering》 EI CAS CSCD 2023年第2期143-153,共11页
In this study, simultaneous nitrification and autotrophic denitrification (SNAD) with either elemental sulfur or pyrite were investigated in fluidized bed reactors in mesophilic conditions. The reactor performance was... In this study, simultaneous nitrification and autotrophic denitrification (SNAD) with either elemental sulfur or pyrite were investigated in fluidized bed reactors in mesophilic conditions. The reactor performance was evaluated at different ammonium (12-40 mg/L of NH4+-N), nitrate (35-45 mg/L of NO3--N), and dissolved oxygen (DO) (0.1-1.5 mg/L) concentrations, with a hydraulic retention time of 12 h. The pyrite reactor supported the SNAD process with a maximum nitrogen removal efficiency of 139.5 mg/(L·d) when the DO concentration was in the range of 0.8-1.5 mg/L. This range, however, limited the denitrification efficiency of the reactor, which decreased from 90.0% ± 5.3% in phases II-V to 67.9% ± 7.2% in phases VI and VII. Sulfate precipitated as iron sulfate (FeSO4/Fe2(SO4)3) and sodium sulfate (Na2SO4) minerals during the experiment. The sulfur reactor did not respond well to nitrification with a low and unstable ammonium removal efficiency, while denitrification occurred with a nitrate removal efficiency of 97.8%. In the pyrite system, the nitrifying bacterium Nitrosomonas sp. was present, and its relative abundance increased from 0.1% to 1.1%, while the autotrophic denitrifying genera Terrimonas, Ferruginibacter, and Denitratimonas dominated the community. Thiobacillus, Sulfurovum, and Trichlorobacter were the most abundant genera in the sulfur reactor during the entire experiment. 展开更多
关键词 PYRITE Elemental sulfur Simultaneous nitrification and denitrification Nitrogen removal 16S rRNA
下载PDF
Communication between bone marrow mesenchymal stem cells and multiple myeloma cells:Impact on disease progression
20
作者 Daniel García-Sánchez Alberto González-González +2 位作者 Ana Alfonso-Fernández Mónica Del Dujo-Gutiérrez Flor M Pérez-Campo 《World Journal of Stem Cells》 SCIE 2023年第5期421-437,共17页
Multiple myeloma(MM)is a hematological malignancy characterized by the accumulation of immunoglobulin-secreting clonal plasma cells at the bone marrow(BM).The interaction between MM cells and the BM microenvironment,a... Multiple myeloma(MM)is a hematological malignancy characterized by the accumulation of immunoglobulin-secreting clonal plasma cells at the bone marrow(BM).The interaction between MM cells and the BM microenvironment,and specifically BM mesenchymal stem cells(BM-MSCs),has a key role in the pathophysiology of this disease.Multiple data support the idea that BM-MSCs not only enhance the proliferation and survival of MM cells but are also involved in the resistance of MM cells to certain drugs,aiding the progression of this hematological tumor.The relation of MM cells with the resident BM-MSCs is a two-way interaction.MM modulate the behavior of BM-MSCs altering their expression profile,proliferation rate,osteogenic potential,and expression of senescence markers.In turn,modified BM-MSCs can produce a set of cytokines that would modulate the BM microenvironment to favor disease progression.The interaction between MM cells and BM-MSCs can be mediated by the secretion of a variety of soluble factors and extracellular vesicles carrying microRNAs,long non-coding RNAs or other molecules.However,the communication between these two types of cells could also involve a direct physical interaction through adhesion molecules or tunneling nanotubes.Thus,understanding the way this communication works and developing strategies to interfere in the process,would preclude the expansion of the MM cells and might offer alternative treatments for this incurable disease. 展开更多
关键词 Multiple myeloma Mesenchymal stem cells Bone marrow microenvironment Soluble factors Extra-cellular vesicles Cells adhesion molecules Tunnellingnanotubes
下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部