This paper presents the design of wideband and high gainFrequency Selective Surface(FSS)loaded antenna for ultra-wideband(UWB)wireless applications requiring high-gain.The antenna consists of a monopole and an FSS ref...This paper presents the design of wideband and high gainFrequency Selective Surface(FSS)loaded antenna for ultra-wideband(UWB)wireless applications requiring high-gain.The antenna consists of a monopole and an FSS reflector.Initially,a conventional rectangular monopole antenna is modified using slot and stub to achieve wide operational bandwidth and size reduction.This modified antenna shows 50%miniaturization compared to a primary rectangular monopole,having a wide impedance bandwidth of 3.6-11.8 GHz.Afterward,an FSS is constructed by the combination of circular and square ring structures.The FSS array consisting of 8×8-unit cells are integrated with the antenna as a reflector to enhance the performance of the proposed miniaturized UWB antenna.The loading of FSS results in an improvement of at least 4 dBi gain in the entire operational bandwidth.Moreover,the antenna’s bandwidth is also increased at the lower frequency band due to the presence of the FSS.A prototype of the antenna is fabricated and tested to verify the simulation results.The simulation and measurement results show that the antenna offers a wideband-10 dB impedance bandwidth ranging from 2.55-13GHz with a stable peak gain of 8.6 dBi and retains the radiation pattern stability.展开更多
基金This work was supported by an Institute for Information and Communications Technology Promotion(IITP),funded by the Korea government(MSIP)(No.2021-0-00490,Devel-opment of precision analysis and imaging technology for biological radio waves).
文摘This paper presents the design of wideband and high gainFrequency Selective Surface(FSS)loaded antenna for ultra-wideband(UWB)wireless applications requiring high-gain.The antenna consists of a monopole and an FSS reflector.Initially,a conventional rectangular monopole antenna is modified using slot and stub to achieve wide operational bandwidth and size reduction.This modified antenna shows 50%miniaturization compared to a primary rectangular monopole,having a wide impedance bandwidth of 3.6-11.8 GHz.Afterward,an FSS is constructed by the combination of circular and square ring structures.The FSS array consisting of 8×8-unit cells are integrated with the antenna as a reflector to enhance the performance of the proposed miniaturized UWB antenna.The loading of FSS results in an improvement of at least 4 dBi gain in the entire operational bandwidth.Moreover,the antenna’s bandwidth is also increased at the lower frequency band due to the presence of the FSS.A prototype of the antenna is fabricated and tested to verify the simulation results.The simulation and measurement results show that the antenna offers a wideband-10 dB impedance bandwidth ranging from 2.55-13GHz with a stable peak gain of 8.6 dBi and retains the radiation pattern stability.