AIM: To explore the expression pattern of E2F5 in primary hepatocellular carcinomas (HCCs) and elucidate the roles of E2F5 in hepatocarcinogenesis. METHODS: E2F5 expression was analyzed in 120 primary HCCs and 29 norm...AIM: To explore the expression pattern of E2F5 in primary hepatocellular carcinomas (HCCs) and elucidate the roles of E2F5 in hepatocarcinogenesis. METHODS: E2F5 expression was analyzed in 120 primary HCCs and 29 normal liver tissues by immunohistochemistry analysis. E2F5-small interfering RNA was transfected into HepG2, an E2F5-overexpressed HCC cell line. After E2F5 knockdown, cell growth capacity and migrating potential were examined. RESULTS: E2F5 was significantly overexpressed in primary HCCs compared with normal liver tissues (P = 0.008). The E2F5-silenced cells showed significantly reduced proliferation (P = 0.004). On the colony formation and soft agar assays, the number of colonies was significantly reduced in E2F5-silenced cells (P = 0.004 and P = 0.009, respectively). E2F5 knockdown resulted in the accumulation of G0/G1 phase cells and a reduction of S phase cells. The number of migrating/invading cells was also reduced after E2F5 knockdown (P = 0.021). CONCLUSION: To our knowledge, this is the first evidence that E2F5 is commonly overexpressed in primary HCC and that E2F5 knockdown significantly repressed the growth of HCC cells.展开更多
Like other solid tumors,colorectal cancer(CRC) is a genomic disorder in which various types of genomic alterations,such as point mutations,genomic rearrangements,gene fusions,or chromosomal copy number alterations,can...Like other solid tumors,colorectal cancer(CRC) is a genomic disorder in which various types of genomic alterations,such as point mutations,genomic rearrangements,gene fusions,or chromosomal copy number alterations,can contribute to the initiation and progression of the disease. The advent of a new DNA sequencing technology known as next-generation sequencing(NGS) has revolutionized the speed and throughput of cataloguing such cancer-related genomic alterations. Now the challenge is how to exploit this advanced technology to better understand the underlying molecular mechanism of colorectal carcinogenesis and to identify clinically relevant genetic biomarkers for diagnosis and personalized therapeutics. In this review,we will introduce NGS-based cancer genomics studies focusing on those of CRC,including a recent large-scale report from the Cancer Genome Atlas. We will mainly discuss how NGS-based exome-,whole genome- and methylome-sequencing have extended our understanding of colorectal carcinogenesis. We will also introduce the unique genomic features of CRC discovered by NGS technologies,such as the relationship with bacterial pathogens and the massive genomic rearrangements of chromothripsis. Finally,we will discuss the necessary steps prior to development of a clinical application of NGS-related findings for the advanced management of patients with CRC.展开更多
基金Supported by A grant of the Korea Healthcare technology R&D Project, Ministry of Health and Welfare, Republic of Korea (A092258)FG08-11-06 of the 21C Frontier Functional Human Genome Project from the Ministry of Education, Science and Technology
文摘AIM: To explore the expression pattern of E2F5 in primary hepatocellular carcinomas (HCCs) and elucidate the roles of E2F5 in hepatocarcinogenesis. METHODS: E2F5 expression was analyzed in 120 primary HCCs and 29 normal liver tissues by immunohistochemistry analysis. E2F5-small interfering RNA was transfected into HepG2, an E2F5-overexpressed HCC cell line. After E2F5 knockdown, cell growth capacity and migrating potential were examined. RESULTS: E2F5 was significantly overexpressed in primary HCCs compared with normal liver tissues (P = 0.008). The E2F5-silenced cells showed significantly reduced proliferation (P = 0.004). On the colony formation and soft agar assays, the number of colonies was significantly reduced in E2F5-silenced cells (P = 0.004 and P = 0.009, respectively). E2F5 knockdown resulted in the accumulation of G0/G1 phase cells and a reduction of S phase cells. The number of migrating/invading cells was also reduced after E2F5 knockdown (P = 0.021). CONCLUSION: To our knowledge, this is the first evidence that E2F5 is commonly overexpressed in primary HCC and that E2F5 knockdown significantly repressed the growth of HCC cells.
基金Supported by Cancer Evolution Research Center(2012 R1A5A2047939),South Korea
文摘Like other solid tumors,colorectal cancer(CRC) is a genomic disorder in which various types of genomic alterations,such as point mutations,genomic rearrangements,gene fusions,or chromosomal copy number alterations,can contribute to the initiation and progression of the disease. The advent of a new DNA sequencing technology known as next-generation sequencing(NGS) has revolutionized the speed and throughput of cataloguing such cancer-related genomic alterations. Now the challenge is how to exploit this advanced technology to better understand the underlying molecular mechanism of colorectal carcinogenesis and to identify clinically relevant genetic biomarkers for diagnosis and personalized therapeutics. In this review,we will introduce NGS-based cancer genomics studies focusing on those of CRC,including a recent large-scale report from the Cancer Genome Atlas. We will mainly discuss how NGS-based exome-,whole genome- and methylome-sequencing have extended our understanding of colorectal carcinogenesis. We will also introduce the unique genomic features of CRC discovered by NGS technologies,such as the relationship with bacterial pathogens and the massive genomic rearrangements of chromothripsis. Finally,we will discuss the necessary steps prior to development of a clinical application of NGS-related findings for the advanced management of patients with CRC.