期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A systematic correlation between morphology of porous carbon cathode and electrolyte in lithium-sulfur battery
1
作者 Jihyeon Park Seoyoung Yoon +8 位作者 Seoyeah Oh Jiyoon Kim Dongjun Kim Geonho Kim Jiyeon Lee Myeong Jun Song Ilto Kim Kwonnam Sohn Jiwon Kim 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第10期561-573,I0014,共14页
Porous carbon has been applied for lithium-sulfur battery cathodes,and carbonized metal-organic framework(MOF)is advantageous in tuning the morphology.Herein,we have systematically synthesized water-distorted MOF(WDM)... Porous carbon has been applied for lithium-sulfur battery cathodes,and carbonized metal-organic framework(MOF)is advantageous in tuning the morphology.Herein,we have systematically synthesized water-distorted MOF(WDM)derived porous carbon via controlling the proportion of both water in a mixed solvent(dimethylformamide and water)and ligand in MOF-5 precursors(metal and ligand),which is categorized by its morphology(i.e.Cracked stone(closed),Tassel(open)and Intermediate(semi-open)).For example,decrease in water and increase in ligand content induce Cracked stone WDMs which showed the highest specific surface area(2742-2990 m^(2)/g)and pore volume(2.81-3.28 cm^(3)/g)after carbonization.Morphological effect of carbonized WDMs(CWDMs)on battery performance was examined by introducing electrolytes with different sulfur reduction mechanisms(i.e.DOL/DME and ACN_(2) LiTFSITTE):Closed framework effectively confines polysulfide,whereas open framework enhances electrolyte accessibility.The initial capacities of the batteries were in the following order:Cracked stone>Intermediate>Tassel for DOL/DME and Intermediate>Tassel>Cracked stone for ACN_(2) LiTFSI-TTE.To note,Intermediate CWDM exhibited the highest initial capacity and retained capacity after 100 cycles(1398 and 747 mAh/g)in ACN_(2) LiTFSI-TTE electrolyte having advantages from both open and closed frameworks.In sum,we could correlate cathode morphology(openness and pore structure)and electrolyte type(i.e.polysulfide solubility)with lithium-sulfur battery performance. 展开更多
关键词 Lithium-sulfur battery Metal-organic framework Hierarchical porous carbon cathode Morphology control ELECTROLYTE Lithium polysulfide solubility
下载PDF
Recent development in upconversion nanoparticles and their application in optogenetics:A review 被引量:3
2
作者 Madhumita Patel Maninder Meenu +2 位作者 Jitender Kumar Pandey Pawan Kumar Rajkumar Patel 《Journal of Rare Earths》 SCIE EI CAS CSCD 2022年第6期847-861,I0001,共16页
Ion channels present in the plasma membrane are responsible for integration and propagation of electric signals,which transmit information in nerve cells.Malfunction of these ion channels leads to many neurological di... Ion channels present in the plasma membrane are responsible for integration and propagation of electric signals,which transmit information in nerve cells.Malfunction of these ion channels leads to many neurological diseases.Recently,optogenetic technology has gained a lot of attention for the manipulation of neuronal circuits.Optogenetics is a neuromodulation approach that has been developed to control neuronal functions and activities using light.The lanthanide-doped upconversion nanoparticles(UCNPs)absorb low energy photons in near-infrared(NIR) window and emit high energy photons in the visible spectrum region via nonlinear processes.In the last few decades,UCNPs have gained great attention in various bio-medical applications such as bio-imaging,drug delivery and optogenetics.The near-infrared illumination is considered more suitable for optogenetics application,due to its lower degree of light attenuation and higher tissue penetration compared to visible light.Therefore,UCNPs have been considered as the new promising candidates for optogenetics applications.Upconversion nanoparticlemediated optogenetic systems provide a great opportunity to manipulate the ion channel in deep tissue.Herein,we summarize the upconversion photoluminescence in lanthanide doped nanomaterials and its mechanisms and several approaches adopted to tune emission color or enhance upconversion efficiency.Recent advances of lanthanide-doped UCNPs design strategy and their mechanism are reviewed.Then,we discuss the neural circuitry modulation using upconversion nanoparticles mediated optogenetics.Moreover,the future perspectives towards optogenetics are also included. 展开更多
关键词 LANTHANIDE UPCONVERSION OPTOGENETICS NANOPARTICLES Neuronal modulation Rare earths
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部