The integrated circuit (IC) manufacturing process is capital intensive and complex. The production process of unit product (or die, as it is commonly referred to) takes several weeks. Semiconductor factories (fabs) co...The integrated circuit (IC) manufacturing process is capital intensive and complex. The production process of unit product (or die, as it is commonly referred to) takes several weeks. Semiconductor factories (fabs) continuously attempt to improve their productivity, as measured in output and cycle time (or mean flow time). The conflicting objective of producing maximum units at minimal production cycle time and at the highest quality, as measured by die yield, is discussed in this paper. The inter-related effects are characterized, and a model is proposed to address this multi-objective function. We then show that, with this model, die cost can be optimized for any given operating conditions of a fab. A numerical example is provided to illustrate the practicality of the model and the proposed optimization method.展开更多
In this paper, we propose a novel uplink power control algorithm, SMST, for multiple-input multiple-output orthogonal frequency-division multiple access (MIMQ-OFDMA).We perform an extensive system-level simulation t...In this paper, we propose a novel uplink power control algorithm, SMST, for multiple-input multiple-output orthogonal frequency-division multiple access (MIMQ-OFDMA).We perform an extensive system-level simulation to compare different uplink power control algorithms, including the FPC adopted in 3GPP LTE and LTE-Advanced. Simulations show that SMST adopted in IEEE 802.16m outperforms other algorithms in terms of spectral efficiency, cell-edge performance, interference control, and trade-off control between sector-accumulated throughput and cell-edge user throughput. The SMST performance gain over FPC can be more than 40%展开更多
文摘The integrated circuit (IC) manufacturing process is capital intensive and complex. The production process of unit product (or die, as it is commonly referred to) takes several weeks. Semiconductor factories (fabs) continuously attempt to improve their productivity, as measured in output and cycle time (or mean flow time). The conflicting objective of producing maximum units at minimal production cycle time and at the highest quality, as measured by die yield, is discussed in this paper. The inter-related effects are characterized, and a model is proposed to address this multi-objective function. We then show that, with this model, die cost can be optimized for any given operating conditions of a fab. A numerical example is provided to illustrate the practicality of the model and the proposed optimization method.
文摘In this paper, we propose a novel uplink power control algorithm, SMST, for multiple-input multiple-output orthogonal frequency-division multiple access (MIMQ-OFDMA).We perform an extensive system-level simulation to compare different uplink power control algorithms, including the FPC adopted in 3GPP LTE and LTE-Advanced. Simulations show that SMST adopted in IEEE 802.16m outperforms other algorithms in terms of spectral efficiency, cell-edge performance, interference control, and trade-off control between sector-accumulated throughput and cell-edge user throughput. The SMST performance gain over FPC can be more than 40%