An intelligent sound-based early fault detection system has been proposed for vehicles using machine learning.The system is designed to detect faults in vehicles at an early stage by analyzing the sound emitted by the...An intelligent sound-based early fault detection system has been proposed for vehicles using machine learning.The system is designed to detect faults in vehicles at an early stage by analyzing the sound emitted by the car.Early detection and correction of defects can improve the efficiency and life of the engine and other mechanical parts.The system uses a microphone to capture the sound emitted by the vehicle and a machine-learning algorithm to analyze the sound and detect faults.A possible fault is determined in the vehicle based on this processed sound.Binary classification is done at the first stage to differentiate between faulty and healthy cars.We collected noisy and normal sound samples of the car engine under normal and different abnormal conditions from multiple workshops and verified the data from experts.We used the time domain,frequency domain,and time-frequency domain features to detect the normal and abnormal conditions of the vehicle correctly.We used abnormal car data to classify it into fifteen other classical vehicle problems.We experimented with various signal processing techniques and presented the comparison results.In the detection and further problem classification,random forest showed the highest results of 97%and 92%with time-frequency features.展开更多
Batsmen are the backbone of any cricket team and their selection is very critical to the team’s success.A good batsman not only scores run but also provides stability to the team’s innings.The most important factor ...Batsmen are the backbone of any cricket team and their selection is very critical to the team’s success.A good batsman not only scores run but also provides stability to the team’s innings.The most important factor in selecting a batsman is their ability to score runs.It is a generally accepted notion that the future performance of a batsman can be predicted by observing and analyzing their past record.This hypothesis is based on the fact that a player’s batting aver-age is generally considered to be a good indicator of their future performance.We proposed a data-driven probabilistic system for batsman performance prediction in the game of cricket.It captures the dependencies between the runs scored by a batsman in consecutive balls.The system is evaluated using a dataset extracted from the Cricinfo website.The system is based on a Hidden Markov model(HMM).HMM is used to generate the prediction model to foresee players’upcoming performances.The first-order Markov chain assumes that the probabil-ity of a batsman scoring runs in the next ball is only dependent on how many runs he scored in the current ball.We use a data-driven approach to learn the para-meters of the HMM from data.A probabilistic matrix is made that predicts what scores the batter can do on the upcoming balls.The results show that the system can accurately predict the runs scored by a batsman in a ball.展开更多
The application of deep learning techniques in the medical field,specifically for Atrial Fibrillation(AFib)detection through Electrocardiogram(ECG)signals,has witnessed significant interest.Accurate and timely diagnos...The application of deep learning techniques in the medical field,specifically for Atrial Fibrillation(AFib)detection through Electrocardiogram(ECG)signals,has witnessed significant interest.Accurate and timely diagnosis increases the patient’s chances of recovery.However,issues like overfitting and inconsistent accuracy across datasets remain challenges.In a quest to address these challenges,a study presents two prominent deep learning architectures,ResNet-50 and DenseNet-121,to evaluate their effectiveness in AFib detection.The aim was to create a robust detection mechanism that consistently performs well.Metrics such as loss,accuracy,precision,sensitivity,and Area Under the Curve(AUC)were utilized for evaluation.The findings revealed that ResNet-50 surpassed DenseNet-121 in all evaluated categories.It demonstrated lower loss rate 0.0315 and 0.0305 superior accuracy of 98.77%and 98.88%,precision of 98.78%and 98.89%and sensitivity of 98.76%and 98.86%for training and validation,hinting at its advanced capability for AFib detection.These insights offer a substantial contribution to the existing literature on deep learning applications for AFib detection from ECG signals.The comparative performance data assists future researchers in selecting suitable deep-learning architectures for AFib detection.Moreover,the outcomes of this study are anticipated to stimulate the development of more advanced and efficient ECG-based AFib detection methodologies,for more accurate and early detection of AFib,thereby fostering improved patient care and outcomes.展开更多
Autism Spectrum Disorder(ASD)is a neurodevelopmental condition characterized by significant challenges in social interaction,communication,and repetitive behaviors.Timely and precise ASD detection is crucial,particula...Autism Spectrum Disorder(ASD)is a neurodevelopmental condition characterized by significant challenges in social interaction,communication,and repetitive behaviors.Timely and precise ASD detection is crucial,particularly in regions with limited diagnostic resources like Pakistan.This study aims to conduct an extensive comparative analysis of various machine learning classifiers for ASD detection using facial images to identify an accurate and cost-effective solution tailored to the local context.The research involves experimentation with VGG16 and MobileNet models,exploring different batch sizes,optimizers,and learning rate schedulers.In addition,the“Orange”machine learning tool is employed to evaluate classifier performance and automated image processing capabilities are utilized within the tool.The findings unequivocally establish VGG16 as the most effective classifier with a 5-fold cross-validation approach.Specifically,VGG16,with a batch size of 2 and the Adam optimizer,trained for 100 epochs,achieves a remarkable validation accuracy of 99% and a testing accuracy of 87%.Furthermore,the model achieves an F1 score of 88%,precision of 85%,and recall of 90% on test images.To validate the practical applicability of the VGG16 model with 5-fold cross-validation,the study conducts further testing on a dataset sourced fromautism centers in Pakistan,resulting in an accuracy rate of 85%.This reaffirms the model’s suitability for real-world ASD detection.This research offers valuable insights into classifier performance,emphasizing the potential of machine learning to deliver precise and accessible ASD diagnoses via facial image analysis.展开更多
Lung cancer is a leading cause of global mortality rates.Early detection of pulmonary tumors can significantly enhance the survival rate of patients.Recently,various Computer-Aided Diagnostic(CAD)methods have been dev...Lung cancer is a leading cause of global mortality rates.Early detection of pulmonary tumors can significantly enhance the survival rate of patients.Recently,various Computer-Aided Diagnostic(CAD)methods have been developed to enhance the detection of pulmonary nodules with high accuracy.Nevertheless,the existing method-ologies cannot obtain a high level of specificity and sensitivity.The present study introduces a novel model for Lung Cancer Segmentation and Classification(LCSC),which incorporates two improved architectures,namely the improved U-Net architecture and the improved AlexNet architecture.The LCSC model comprises two distinct stages.The first stage involves the utilization of an improved U-Net architecture to segment candidate nodules extracted from the lung lobes.Subsequently,an improved AlexNet architecture is employed to classify lung cancer.During the first stage,the proposed model demonstrates a dice accuracy of 0.855,a precision of 0.933,and a recall of 0.789 for the segmentation of candidate nodules.The suggested improved AlexNet architecture attains 97.06%accuracy,a true positive rate of 96.36%,a true negative rate of 97.77%,a positive predictive value of 97.74%,and a negative predictive value of 96.41%for classifying pulmonary cancer as either benign or malignant.The proposed LCSC model is tested and evaluated employing the publically available dataset furnished by the Lung Image Database Consortium and Image Database Resource Initiative(LIDC-IDRI).This proposed technique exhibits remarkable performance compared to the existing methods by using various evaluation parameters.展开更多
Pulmonary nodules are small, round, or oval-shaped growths on the lungs. They can be benign (noncancerous) or malignant (cancerous). The size of a nodule can range from a few millimeters to a few centimeters in diamet...Pulmonary nodules are small, round, or oval-shaped growths on the lungs. They can be benign (noncancerous) or malignant (cancerous). The size of a nodule can range from a few millimeters to a few centimeters in diameter. Nodules may be found during a chest X-ray or other imaging test for an unrelated health problem. In the proposed methodology pulmonary nodules can be classified into three stages. Firstly, a 2D histogram thresholding technique is used to identify volume segmentation. An ant colony optimization algorithm is used to determine the optimal threshold value. Secondly, geometrical features such as lines, arcs, extended arcs, and ellipses are used to detect oval shapes. Thirdly, Histogram Oriented Surface Normal Vector (HOSNV) feature descriptors can be used to identify nodules of different sizes and shapes by using a scaled and rotation-invariant texture description. Smart nodule classification was performed with the XGBoost classifier. The results are tested and validated using the Lung Image Consortium Database (LICD). The proposed method has a sensitivity of 98.49% for nodules sized 3–30 mm.展开更多
In recent years,research on facial expression recognition(FER)under mask is trending.Wearing a mask for protection from Covid 19 has become a compulsion and it hides the facial expressions that is why FER under the ma...In recent years,research on facial expression recognition(FER)under mask is trending.Wearing a mask for protection from Covid 19 has become a compulsion and it hides the facial expressions that is why FER under the mask is a difficult task.The prevailing unimodal techniques for facial recognition are not up to the mark in terms of good results for the masked face,however,a multi-modal technique can be employed to generate better results.We proposed a multi-modal methodology based on deep learning for facial recognition under a masked face using facial and vocal expressions.The multimodal has been trained on a facial and vocal dataset.We have used two standard datasets,M-LFW for the masked dataset and CREMA-D and TESS dataset for vocal expressions.The vocal expressions are in the form of audio while the faces data is in image form that is why the data is heterogenous.In order to make the data homogeneous,the voice data is converted into images by taking spectrogram.A spectrogram embeds important features of the voice and it converts the audio format into the images.Later,the dataset is passed to the multimodal for training.neural network and the experimental results demonstrate that the proposed multimodal algorithm outsets unimodal methods and other state-of-the-art deep neural network models.展开更多
基金The authors are pleased to announce that The Superior University,Lahore,sponsors this research.
文摘An intelligent sound-based early fault detection system has been proposed for vehicles using machine learning.The system is designed to detect faults in vehicles at an early stage by analyzing the sound emitted by the car.Early detection and correction of defects can improve the efficiency and life of the engine and other mechanical parts.The system uses a microphone to capture the sound emitted by the vehicle and a machine-learning algorithm to analyze the sound and detect faults.A possible fault is determined in the vehicle based on this processed sound.Binary classification is done at the first stage to differentiate between faulty and healthy cars.We collected noisy and normal sound samples of the car engine under normal and different abnormal conditions from multiple workshops and verified the data from experts.We used the time domain,frequency domain,and time-frequency domain features to detect the normal and abnormal conditions of the vehicle correctly.We used abnormal car data to classify it into fifteen other classical vehicle problems.We experimented with various signal processing techniques and presented the comparison results.In the detection and further problem classification,random forest showed the highest results of 97%and 92%with time-frequency features.
文摘Batsmen are the backbone of any cricket team and their selection is very critical to the team’s success.A good batsman not only scores run but also provides stability to the team’s innings.The most important factor in selecting a batsman is their ability to score runs.It is a generally accepted notion that the future performance of a batsman can be predicted by observing and analyzing their past record.This hypothesis is based on the fact that a player’s batting aver-age is generally considered to be a good indicator of their future performance.We proposed a data-driven probabilistic system for batsman performance prediction in the game of cricket.It captures the dependencies between the runs scored by a batsman in consecutive balls.The system is evaluated using a dataset extracted from the Cricinfo website.The system is based on a Hidden Markov model(HMM).HMM is used to generate the prediction model to foresee players’upcoming performances.The first-order Markov chain assumes that the probabil-ity of a batsman scoring runs in the next ball is only dependent on how many runs he scored in the current ball.We use a data-driven approach to learn the para-meters of the HMM from data.A probabilistic matrix is made that predicts what scores the batter can do on the upcoming balls.The results show that the system can accurately predict the runs scored by a batsman in a ball.
文摘The application of deep learning techniques in the medical field,specifically for Atrial Fibrillation(AFib)detection through Electrocardiogram(ECG)signals,has witnessed significant interest.Accurate and timely diagnosis increases the patient’s chances of recovery.However,issues like overfitting and inconsistent accuracy across datasets remain challenges.In a quest to address these challenges,a study presents two prominent deep learning architectures,ResNet-50 and DenseNet-121,to evaluate their effectiveness in AFib detection.The aim was to create a robust detection mechanism that consistently performs well.Metrics such as loss,accuracy,precision,sensitivity,and Area Under the Curve(AUC)were utilized for evaluation.The findings revealed that ResNet-50 surpassed DenseNet-121 in all evaluated categories.It demonstrated lower loss rate 0.0315 and 0.0305 superior accuracy of 98.77%and 98.88%,precision of 98.78%and 98.89%and sensitivity of 98.76%and 98.86%for training and validation,hinting at its advanced capability for AFib detection.These insights offer a substantial contribution to the existing literature on deep learning applications for AFib detection from ECG signals.The comparative performance data assists future researchers in selecting suitable deep-learning architectures for AFib detection.Moreover,the outcomes of this study are anticipated to stimulate the development of more advanced and efficient ECG-based AFib detection methodologies,for more accurate and early detection of AFib,thereby fostering improved patient care and outcomes.
文摘Autism Spectrum Disorder(ASD)is a neurodevelopmental condition characterized by significant challenges in social interaction,communication,and repetitive behaviors.Timely and precise ASD detection is crucial,particularly in regions with limited diagnostic resources like Pakistan.This study aims to conduct an extensive comparative analysis of various machine learning classifiers for ASD detection using facial images to identify an accurate and cost-effective solution tailored to the local context.The research involves experimentation with VGG16 and MobileNet models,exploring different batch sizes,optimizers,and learning rate schedulers.In addition,the“Orange”machine learning tool is employed to evaluate classifier performance and automated image processing capabilities are utilized within the tool.The findings unequivocally establish VGG16 as the most effective classifier with a 5-fold cross-validation approach.Specifically,VGG16,with a batch size of 2 and the Adam optimizer,trained for 100 epochs,achieves a remarkable validation accuracy of 99% and a testing accuracy of 87%.Furthermore,the model achieves an F1 score of 88%,precision of 85%,and recall of 90% on test images.To validate the practical applicability of the VGG16 model with 5-fold cross-validation,the study conducts further testing on a dataset sourced fromautism centers in Pakistan,resulting in an accuracy rate of 85%.This reaffirms the model’s suitability for real-world ASD detection.This research offers valuable insights into classifier performance,emphasizing the potential of machine learning to deliver precise and accessible ASD diagnoses via facial image analysis.
基金supported and funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University(IMSIU)(Grant Number IMSIU-RP23044).
文摘Lung cancer is a leading cause of global mortality rates.Early detection of pulmonary tumors can significantly enhance the survival rate of patients.Recently,various Computer-Aided Diagnostic(CAD)methods have been developed to enhance the detection of pulmonary nodules with high accuracy.Nevertheless,the existing method-ologies cannot obtain a high level of specificity and sensitivity.The present study introduces a novel model for Lung Cancer Segmentation and Classification(LCSC),which incorporates two improved architectures,namely the improved U-Net architecture and the improved AlexNet architecture.The LCSC model comprises two distinct stages.The first stage involves the utilization of an improved U-Net architecture to segment candidate nodules extracted from the lung lobes.Subsequently,an improved AlexNet architecture is employed to classify lung cancer.During the first stage,the proposed model demonstrates a dice accuracy of 0.855,a precision of 0.933,and a recall of 0.789 for the segmentation of candidate nodules.The suggested improved AlexNet architecture attains 97.06%accuracy,a true positive rate of 96.36%,a true negative rate of 97.77%,a positive predictive value of 97.74%,and a negative predictive value of 96.41%for classifying pulmonary cancer as either benign or malignant.The proposed LCSC model is tested and evaluated employing the publically available dataset furnished by the Lung Image Database Consortium and Image Database Resource Initiative(LIDC-IDRI).This proposed technique exhibits remarkable performance compared to the existing methods by using various evaluation parameters.
文摘Pulmonary nodules are small, round, or oval-shaped growths on the lungs. They can be benign (noncancerous) or malignant (cancerous). The size of a nodule can range from a few millimeters to a few centimeters in diameter. Nodules may be found during a chest X-ray or other imaging test for an unrelated health problem. In the proposed methodology pulmonary nodules can be classified into three stages. Firstly, a 2D histogram thresholding technique is used to identify volume segmentation. An ant colony optimization algorithm is used to determine the optimal threshold value. Secondly, geometrical features such as lines, arcs, extended arcs, and ellipses are used to detect oval shapes. Thirdly, Histogram Oriented Surface Normal Vector (HOSNV) feature descriptors can be used to identify nodules of different sizes and shapes by using a scaled and rotation-invariant texture description. Smart nodule classification was performed with the XGBoost classifier. The results are tested and validated using the Lung Image Consortium Database (LICD). The proposed method has a sensitivity of 98.49% for nodules sized 3–30 mm.
文摘In recent years,research on facial expression recognition(FER)under mask is trending.Wearing a mask for protection from Covid 19 has become a compulsion and it hides the facial expressions that is why FER under the mask is a difficult task.The prevailing unimodal techniques for facial recognition are not up to the mark in terms of good results for the masked face,however,a multi-modal technique can be employed to generate better results.We proposed a multi-modal methodology based on deep learning for facial recognition under a masked face using facial and vocal expressions.The multimodal has been trained on a facial and vocal dataset.We have used two standard datasets,M-LFW for the masked dataset and CREMA-D and TESS dataset for vocal expressions.The vocal expressions are in the form of audio while the faces data is in image form that is why the data is heterogenous.In order to make the data homogeneous,the voice data is converted into images by taking spectrogram.A spectrogram embeds important features of the voice and it converts the audio format into the images.Later,the dataset is passed to the multimodal for training.neural network and the experimental results demonstrate that the proposed multimodal algorithm outsets unimodal methods and other state-of-the-art deep neural network models.