Two linked models have been developed to explore the relationship between the amount of porosity arising in service from both radiolytic oxidation and fast neutron damage that influences both the strength and the forc...Two linked models have been developed to explore the relationship between the amount of porosity arising in service from both radiolytic oxidation and fast neutron damage that influences both the strength and the force-displacement(load-displacement)behaviour and crack propagation in pile grade A graphite used as a nuclear reactor moderator material.Firstly models of the microstructure of the porous graphite for both unirradiated and irradiated graphite are created.These form the input for the second stage,simulating fracture in lattice-type finite element models,which predicts force(load)-displacement and crack propagation paths.Microstructures comprising aligned filler particles,typical of needle coke,in a porous matrix have been explored.The purpose was to isolate the contributions of filler particles and porosity to fracture strength and crack paths and consider their implications for the overall failure of reactor core graphite.展开更多
A simple and efficient microwave-assisted procedure for synthesis of L-cysteine-capped nickel nanoparticles(cyst-Ni NPs) in ethylene glycol solvent was demonstrated. The as-synthesised NPs were characterised by ultrav...A simple and efficient microwave-assisted procedure for synthesis of L-cysteine-capped nickel nanoparticles(cyst-Ni NPs) in ethylene glycol solvent was demonstrated. The as-synthesised NPs were characterised by ultraviolet–visible(UV–Vis) spectrophotometer, Fourier transform infrared(FTIR) spectroscopy, transmission electron microscopy(TEM) and X-ray diffractometry(XRD). The cyst-Ni NPs are proved to be excellent heterogeneous catalysts for the 100% reduction of 4-nitrophenol(4-NPh) in the presence of reductant(Na BH4)within reaction time of 40 s. In contrast, Raney nickel in similar sample environments shows only 25.5% reduction.The kinetic and energetic behaviours of cyst-Ni NPs were also studied, and the reduction reaction is determined to follow pseudo-first-order kinetics with a rate constant value of 0.115 s-1 and activation energy of 36.1 kJ·mol-1. In addition to its high catalytic competence, cyst-Ni NPs catalyst exhibits excellent recyclability with negligible catalytic poisoning.展开更多
Laser-solid interactions are highly suited as a potential source of high energy X-rays for nondestructive imaging.A bright,energetic X-ray pulse can be driven from a small source,making it ideal for high resolution X-...Laser-solid interactions are highly suited as a potential source of high energy X-rays for nondestructive imaging.A bright,energetic X-ray pulse can be driven from a small source,making it ideal for high resolution X-ray radiography.By limiting the lateral dimensions of the target we are able to confine the region over which X-rays are produced,enabling imaging with enhanced resolution and contrast.Using constrained targets we demonstrate experimentally a(20±3)μm X-ray source,improving the image quality compared to unconstrained foil targets.Modelling demonstrates that a larger sheath field envelope around the perimeter of the constrained targets increases the proportion of electron current that recirculates through the target,driving a brighter source of X-rays.展开更多
文摘Two linked models have been developed to explore the relationship between the amount of porosity arising in service from both radiolytic oxidation and fast neutron damage that influences both the strength and the force-displacement(load-displacement)behaviour and crack propagation in pile grade A graphite used as a nuclear reactor moderator material.Firstly models of the microstructure of the porous graphite for both unirradiated and irradiated graphite are created.These form the input for the second stage,simulating fracture in lattice-type finite element models,which predicts force(load)-displacement and crack propagation paths.Microstructures comprising aligned filler particles,typical of needle coke,in a porous matrix have been explored.The purpose was to isolate the contributions of filler particles and porosity to fracture strength and crack paths and consider their implications for the overall failure of reactor core graphite.
基金financially supported by the King Saud University via their Research Project(No.RGP-VPP-236)
文摘A simple and efficient microwave-assisted procedure for synthesis of L-cysteine-capped nickel nanoparticles(cyst-Ni NPs) in ethylene glycol solvent was demonstrated. The as-synthesised NPs were characterised by ultraviolet–visible(UV–Vis) spectrophotometer, Fourier transform infrared(FTIR) spectroscopy, transmission electron microscopy(TEM) and X-ray diffractometry(XRD). The cyst-Ni NPs are proved to be excellent heterogeneous catalysts for the 100% reduction of 4-nitrophenol(4-NPh) in the presence of reductant(Na BH4)within reaction time of 40 s. In contrast, Raney nickel in similar sample environments shows only 25.5% reduction.The kinetic and energetic behaviours of cyst-Ni NPs were also studied, and the reduction reaction is determined to follow pseudo-first-order kinetics with a rate constant value of 0.115 s-1 and activation energy of 36.1 kJ·mol-1. In addition to its high catalytic competence, cyst-Ni NPs catalyst exhibits excellent recyclability with negligible catalytic poisoning.
基金supported by EPSRC grants EP/K022415/1and EP/R006202/1the STFC IPS grant ST/P000177/1
文摘Laser-solid interactions are highly suited as a potential source of high energy X-rays for nondestructive imaging.A bright,energetic X-ray pulse can be driven from a small source,making it ideal for high resolution X-ray radiography.By limiting the lateral dimensions of the target we are able to confine the region over which X-rays are produced,enabling imaging with enhanced resolution and contrast.Using constrained targets we demonstrate experimentally a(20±3)μm X-ray source,improving the image quality compared to unconstrained foil targets.Modelling demonstrates that a larger sheath field envelope around the perimeter of the constrained targets increases the proportion of electron current that recirculates through the target,driving a brighter source of X-rays.