By focusing on international cooperation in fighting the pandemic and supporting “small yet smart” assistance programs that benefit people’s livelihoods, China’s foreign aid has not only promoted pandemic response...By focusing on international cooperation in fighting the pandemic and supporting “small yet smart” assistance programs that benefit people’s livelihoods, China’s foreign aid has not only promoted pandemic response and socio-economic recovery of recipient countries, but also helped China build a new development paradigm and safeguard its sovereignty, security and development interests. In the face of a turbulent and changing world, the unique role of foreign aid as an important tool for building a community with a shared future has become even clearer.展开更多
Production of cowpea (Vigna unguiculata (L.) Walp.), a staple legume crop in Sub-Saharan Africa, faces challenges due to biotic and abiotic constraints. Induced mutagenesis was deployed to create genetic variation in ...Production of cowpea (Vigna unguiculata (L.) Walp.), a staple legume crop in Sub-Saharan Africa, faces challenges due to biotic and abiotic constraints. Induced mutagenesis was deployed to create genetic variation in two cowpea varieties (KVX396-4-5-2D and Moussa local). The radio-sensitivity tests led to determe the lethal dose 50 (LD50) corresponding to 230 Gy and 220 Gy for KVX396-4-5-2D and Moussa local varieties, respectively. Dried seeds (M0) of each variety were gamma-ray irradiated with LD50 − 50, LD50 and LD50 + 50. M1 seeds were advanced to generate M2, M3 and M4 mutants using the single-seed-descent method. M4 mutant lines were evaluated in rain-fed conditions using a randomized complete block design to assess phenotypic differences. Data on seven qualitative and eleven quantitative traits were collected. The results indicated that the mutation induced variability in three qualitative traits: in KVX 396-4-5-2D mutant lines, with flower and seed color frequencies at 2.61% and 0.56% respectively, and pod dehiscence at a frequency of 0.24%. While in Moussa local mutants, a pod color changed at a frequency of 17%. ANOVA results revealed significant differences between mutants of both varieties for all quantitative traits, including photosynthetic parameters. Positive correlations were observed between leaf diameter and 100-seed weight, and between branch number and 100-seed weight. Hierarchical clustering revealed three clusters among KVX 396-4-5-2D mutants and six clusters among Moussa local mutants. Early maturity and high foliage were induced traits in Cluster 3 of KVX 396-4-5-2D mutants while high hundred-seed weight was induced in Cluster 6 of Moussa local mutants.展开更多
The experiments were conducted to determine suitable sowing time in order to achieve high plant biomass and sugar content of sweet sorghum for bioethanol manufacture. The results showed that germination rate reached &...The experiments were conducted to determine suitable sowing time in order to achieve high plant biomass and sugar content of sweet sorghum for bioethanol manufacture. The results showed that germination rate reached > 80% in all trial times (p > 0.05). The growth and development speed of sweet sorghum reduced when seeds were sowed in August and was significantly different from other sowing times (p < 0.05). Sowing from March to June obtained the highest plant height during all growth and development stages. Lodging and diseases observed in all periods of sowing, and planting began in July and August had lower percentage. In contrast, the productivity of fresh weight (1310.4 g/whole plant), sugar content (14.9% Brix), biomass yield (122.4 tons/ha) and theoretical converted ethanol yield (5 tons/ha) were the highest when sweet sorghum planted from March to June. It was observed that sowing sweet sorghum in four periods of month from March to June had the desirable biomass for bioethanol production.展开更多
Human society locally and globally needs to better understand and respond to ever-more complex, interwoven problems: environmental degradation;climate instability;persistent poverty;disparities in human health;growing...Human society locally and globally needs to better understand and respond to ever-more complex, interwoven problems: environmental degradation;climate instability;persistent poverty;disparities in human health;growing income/wealth inequality;economies and infrastructures vulnerable to climate shock;and mounting socio-political unrest. Cities are where most people live, urbanization is a strong upward global trend, and cities bring all these problems into sharp, compelling focus. Since outcomes stem from processes and systems, we argue transformative changes depend on re-imagining the Urban Design, Urban Planning and Urban Development Practice (UD/UP/UDP) process. While there has been insufficient attention to process innovation— with technological aspects tending to dominate UD/UP/UDP work—emerging systems views of cities, and disenchantment with existing modes are enabling. We propose an empirically based integrative frame to tackle recognized conundrums, and inform an adaptive UD/UP/UDP process—from concept through design, assessment, planning, implementation, project functioning and monitoring. The frame contemplates six domains (6-D): 1) Project ethos, concept, and framing;2) sectors, topics, and issues;3) Varying spatial and temporal scales;4) Stakeholder interests, relationships and capacities;5) Knowledge types, modes and methods;and 6) Socio-technical capacities and networks. The frame, process and outcomes constitute a socio-technical enterprise (STE) approach to UD/UP/UDP work, with implications for education, training, and professional practice. We highlight the pivotal role Integrators and Universities play, and the scalability of STE knowledge/capacity networks. The case of Greater Mexico City/Central Mexico Urban Region illustrates the utility of the approach in a hyper-complex, climate-change vulnerable regional context.展开更多
Mining projects are among the most impactful development projects, and the most controversial. The Conga Mining Project, proposed by the U.S. based Newmont Mining Corporation, in partnership with Minas Buenaventura, w...Mining projects are among the most impactful development projects, and the most controversial. The Conga Mining Project, proposed by the U.S. based Newmont Mining Corporation, in partnership with Minas Buenaventura, was slated for the Cajamarca region of Peru. Since the Environmental Impact Assessment (EIA) was completed in 2010, controversy has escalated: public protests have precipitated a political crisis for President Humala, with several ministers resigning. The proposed project would have been made located approximately 73 km northeast of the city of Cajamarca, in the northern Peruvian Andes, in the district of Sorochuco, within an area defined by four major lakes, headwaters of rivers, and wetlands. Despite findings of “no significant impact” by the 2010 EIA, the project is currently postponed indefinitely due to the public backlash, international attention, and questions of integrity surrounding environmental and social concerns. We use the Conga Mining case to interrogate business-as-usual (BAU) design, assessment, planning, implementation and monitoring practices for extractive development in Peru, and suggest alternatives. Our analysis is based on an integrative framework that is empirically based (previously developed by the authors), one with a greater likelihood of improving sustainable development and the equity of positive and negative impacts among stakeholders. Suggestions are tailored to the setting: we pay special attention to the climate-change and socio-political contexts of Peru. We seek to exploit a shifting political landscape that is resisting BAU and countering the systematic disenfranchisement of vulnerable populations by extractive resource industries. These appear to be enabling conditions to promote the adoption of a capacity building, socio-technical enterprise approach to framing and designing sustainable development projects in Peru, with implications beyond.展开更多
A new extractive boom looms over Bolivia, home to roughly a third of the world's lithium reserves. Since previous mining booms have not put the country on a sustainable development path, this paper briefly outlines t...A new extractive boom looms over Bolivia, home to roughly a third of the world's lithium reserves. Since previous mining booms have not put the country on a sustainable development path, this paper briefly outlines the initial results of a research on policy options to break away with the past. The paper first assesses the relationship between resource dependence and sustainable development by looking at the evolution of genuine savings in Bolivia and neighbouring, resource-rich countries. It then discusses Bolivia's potential position on the world's lithium market and examines the institutional variables that shape perceptions, expectations and policy options at national and local levels. Notwithstanding major technological challenges, the paper concludes that further research should shed light on how inclusive processes can be nurtured in rentier states, and how far specific institutional reforms can contribute to turning the looming lithium boom into sustainable outcomes in the Bolivian case.展开更多
There is no doubt that international scientific collaboration has increased in recent years in terms of both volume and importance.The Royal Society of Chemistry(RSC) and our partners in China are continuously strengt...There is no doubt that international scientific collaboration has increased in recent years in terms of both volume and importance.The Royal Society of Chemistry(RSC) and our partners in China are continuously strengthening links with the chemical sciences community around the world through a number of initiatives.展开更多
With the increasing scale of energy storage,it is urgently demanding for further advancements on battery technologies in terms of energy density,cost,cycle life and safety.The development of lithium-ion batteries(LIBs...With the increasing scale of energy storage,it is urgently demanding for further advancements on battery technologies in terms of energy density,cost,cycle life and safety.The development of lithium-ion batteries(LIBs)not only relies on electrodes,but also the functional electrolyte systems to achieve controllable formation of solid electrolyte interphase and high ionic conductivity.In order to satisfy the needs of higher energy density,high-voltage(>4.3 V)cathodes such as Li-rich layered compounds,olivine LiNiPO_(4),spinel LiNi_(0.5)Mn_(1.5)O_(4) have been extensively studied.However,high-voltage cathodebased LIBs fade rapidly mainly owing to the anodic decomposition of electrolytes,gradually thickening of interfacial passivation layer and vast irreversible capacity loss,hence encountering huge obstacle toward practical applications.To tackle this roadblock,substantial progress has been made toward oxidation-resistant electrolytes to block its side reaction with high-voltage cathodes.In this review,we discuss degradation mechanisms of electrolytes at electrolyte/cathode interface and ideal requirements of electrolytes for high-voltage cathode,as well as summarize recent advances of oxidation-resistant electrolyte optimization mainly from solvents and additives.With these insights,it is anticipated that development of liquid electrolyte tolerable to high-voltage cathode will boost the large-scale practical applications of high-voltage cathode-based LIBs.展开更多
Sesame(Sesamum indicum L.)is a significantly lucrative cash crop for millions of small-holder farmers.Its seeds are an important source of a highly appreciated vegetable oil globally and two clinically essential antio...Sesame(Sesamum indicum L.)is a significantly lucrative cash crop for millions of small-holder farmers.Its seeds are an important source of a highly appreciated vegetable oil globally and two clinically essential antioxidant lignans,sesamin and sesamolin.Accordingly,many countries import millions of tons of sesame seed every year.The demand for lignan-rich sesame seeds has been increasing in recent years due to the continuous discovery of several pharmacological attributes of sesamin and sesamolin.To meet this demand,the sesame breeder’s primary objective is to release sesame cultivars that are enriched in oil and lignans.Thus,it is necessary to summarize the information related to the sesamin and sesamolin contents in sesame in order to promote the joint efforts of specialized research teams on this important oilseed crop.In this article,we present the current knowledge on the sesamin and sesamolin contents in S.indicum L.with respect to the updated biosynthesis pathway,associated markers,governing loci,available variability in sesame germplasm,the in planta potential roles of these compounds in sesame,and the newly discovered pharmacological attributes.In addition,we propose and discuss some required studies that might facilitate genomics-assisted breeding of high lignan content sesame varieties.展开更多
New methods in landscape ecology to study the link between landscape heterogeneity and landscape functionality are needed. Heterogeneity is a basic characteristic of landscape, and landscape function is the capacity t...New methods in landscape ecology to study the link between landscape heterogeneity and landscape functionality are needed. Heterogeneity is a basic characteristic of landscape, and landscape function is the capacity to change the structural heterogeneity of a landscape system. In most developed countries the industrialisation of agriculture has in general resulted in a change of agricultural landscapes from a small-grained heterogeneous pattern towards more monotonous and monofunctional landscapes. During the 1990's this trends seems to have changed due to a diversification of rural land use and new trends in urbanisation. Weather these phases of landscape development should be expected in developing countries is a totally open question. Dealing with the study of multifunctionality of landscapes it is proposed to distinguish between ecological functionality of landscape ecosystems, functionality pertaining to land use and social functionality. Further, the relation between function, space and scale is important by the determination of spatial and time segregation as well as spatial and time integration of multifunctionality in landscapes.展开更多
Urban green spaces have been arisen growing concern responded to the social and environmental costs of urban sprawl. A wide range of planning and policies has been and/or will be designed to protect urban green spaces...Urban green spaces have been arisen growing concern responded to the social and environmental costs of urban sprawl. A wide range of planning and policies has been and/or will be designed to protect urban green spaces and optimize their spatial pattern. A better design or planning of urban green space can make a major contribution to quality of environment and urban life, and furthermore can decide whether we can have a sustainable development in the urban area. Information about the status quo of urban green spaces can help planners design more effectively. However, how to quantify and capture such information will be the essential question we face. In this paper, to quantify the urban green space, a new method comprising gradient analysis, landscape metrics and GIS was developed through a case of Jinan City. The results demonstrate: 1) the gradient analysis is a valid and reliable instrument to quantify the urban green space spatial pattern precisely; 2) using moving window, explicit landscape metrics were spatially realized. Compared with quantifying metrics in the entire landscape, it would be better to link pattern with process and establish an important basis for analyzing the ecological and socioeconomic functions of green spaces.展开更多
This study was conducted to investigate the dissipation pattern and runoff of herbicides to the river basin from the paddy fields. Pesticide paddy field model(PADDY) was applied to predict herbicide concentration in p...This study was conducted to investigate the dissipation pattern and runoff of herbicides to the river basin from the paddy fields. Pesticide paddy field model(PADDY) was applied to predict herbicide concentration in paddy fields. A field study was conducted in a paddy farm of Higashi Hiroshima City, Hiroshima Prefecture, Japan in the year of 2003 paddy season. The herbicides were mefenacet, thiobencarb, and bensulfuron methyl. The sample water was analyzed by using gas chromatography and HPLC after solid phase extraction. Predicted dissipation rate of thiobencarb in paddy water was higher(DT_ 50 = 4 36) than that measured, with a lower k value(-0 069). Two weeks after application no thiobencarb was detected in the drainage channel and down stream. In the down stream, thiobencarb was detected until 3 d after application, with a range of 0 02% to 0 08% of applied herbicide. The predicted dissipation rate(k) and half-life(DT_ 50 ) of mefenacet was not significantly different from that of measured. In the drainage channel, upstream and downstream mefenacet was found during the whole study period. In downstream, the maximum concentration of mefenacet was present 0 61% of applied in the paddy field on 3DAH. The dissipation rate(k) of BSM varied from -0 0860 to -0 1059 to with half-life(DT_ 50 ) 3 5 and 2 84 d. In upstream water, no BSM was detected except trace amounts(0 01 μg/L) at 3 d after application. However, in the drainage channel 8%, 6% and 1 58% of applied BSM was present at 0, 1 and 3 d after application respectively. In the down stream, the highest concentration was 1 06%, shortly after application.展开更多
The aim of this paper is to clarify the pattern and process of changes of landscape in riverside open spaces in urbanized area.The area between the old banks of the Furukawa River in Hiroshima City was examined in thi...The aim of this paper is to clarify the pattern and process of changes of landscape in riverside open spaces in urbanized area.The area between the old banks of the Furukawa River in Hiroshima City was examined in this research.The land use maps of the study area were drawn at seven different times were analyzed,and the number,sizes and perimeters of all patches of all land use types were measured.In these areas,temporal patterns of land use change over the past 30 years were divided to three stages:19661976,19761988 and 19881997.As a result of human disturbance,the riparian forest patches in urbanized areas have decreased in average size and have also become longer and narrower.展开更多
In this study,our recent work on advanced ion chromatographic methods for the simultaneous determination of inorganic ionic species such as common anions(SO2-4,Cl-and NO-3) and cations(Na+,NH+4,K+,Mg2+,and Ca2+),nutri...In this study,our recent work on advanced ion chromatographic methods for the simultaneous determination of inorganic ionic species such as common anions(SO2-4,Cl-and NO-3) and cations(Na+,NH+4,K+,Mg2+,and Ca2+),nutrients(phosphate and silicate) and hydrogen ion/alkalinity are summarized first.Then,the applications using these methods for monitoring environmental water quality are also presented.For the determination of common anions and cations with nutrients,the separation was successfully performed by a polymethacrylate-based weakly acidic cation-exchange column of TSKgel Super IC-A/C(Tosoh,150 mm×6.0 mm i.d.) and a mixture solution of 100 mmol/L ascorbic acid and 4 mmol/L 18-crown-6 as acidic eluent with dual detection of conductivity and spectrophotometry.For the determination of hydrogen ion/alkalinity,the separation was conducted by TSKgel ODS-100Z column(Tosoh,150 mm×4.5 mm i.d.) modified with lithium dodecylsulfate and an eluent of 40 mmol/L LiCl/0.1 mmol/L lithium dodecylsulfate/0.05 mmol/L H2SO4 with conductivity detector.The differences of ion concentration between untreated and treated wastewater showed the variation of ionic species during biological treatment process in a sewage treatment plant.Occurrence and distribution of water-quality conditions were related to the bioavailability and human activity in watershed.From these results,our advanced ion chromatographic methods have contributed significantly for water quality monitoring of environmental waters.展开更多
It is important to understand how land use change impacts groundwater recharge, especially for regions that are undergoing rapid urbanization and there is limited surface water. In this study, the hydrological process...It is important to understand how land use change impacts groundwater recharge, especially for regions that are undergoing rapid urbanization and there is limited surface water. In this study, the hydrological processes and re- charge ability of various land use types in Guishui River Basin, China (in Beijing Municipality) were analyzed. The impact of land use change was investigated based on water balance modeling, WetSpass and GIS. The results indicate that groundwater recharge accounts for only 21.16% of the precipitation, while 72.54% is lost in the form of evapotranspiration. The annual-lumped groundwater recharge rate decreases in the order of cropland, grassland, urban land, and forest. Land use change has resulted in a decrease of 4 x 106 m3 of yearly groundwater recharge in the study area, with a spatially averaged rate of 100.48 mm/yr and 98.41 mm/yr in 1980 and 2005, respectively. This variation has primarily come from an increase of urban area and rural settlements, as well as a decrease of cropland.展开更多
文摘By focusing on international cooperation in fighting the pandemic and supporting “small yet smart” assistance programs that benefit people’s livelihoods, China’s foreign aid has not only promoted pandemic response and socio-economic recovery of recipient countries, but also helped China build a new development paradigm and safeguard its sovereignty, security and development interests. In the face of a turbulent and changing world, the unique role of foreign aid as an important tool for building a community with a shared future has become even clearer.
文摘Production of cowpea (Vigna unguiculata (L.) Walp.), a staple legume crop in Sub-Saharan Africa, faces challenges due to biotic and abiotic constraints. Induced mutagenesis was deployed to create genetic variation in two cowpea varieties (KVX396-4-5-2D and Moussa local). The radio-sensitivity tests led to determe the lethal dose 50 (LD50) corresponding to 230 Gy and 220 Gy for KVX396-4-5-2D and Moussa local varieties, respectively. Dried seeds (M0) of each variety were gamma-ray irradiated with LD50 − 50, LD50 and LD50 + 50. M1 seeds were advanced to generate M2, M3 and M4 mutants using the single-seed-descent method. M4 mutant lines were evaluated in rain-fed conditions using a randomized complete block design to assess phenotypic differences. Data on seven qualitative and eleven quantitative traits were collected. The results indicated that the mutation induced variability in three qualitative traits: in KVX 396-4-5-2D mutant lines, with flower and seed color frequencies at 2.61% and 0.56% respectively, and pod dehiscence at a frequency of 0.24%. While in Moussa local mutants, a pod color changed at a frequency of 17%. ANOVA results revealed significant differences between mutants of both varieties for all quantitative traits, including photosynthetic parameters. Positive correlations were observed between leaf diameter and 100-seed weight, and between branch number and 100-seed weight. Hierarchical clustering revealed three clusters among KVX 396-4-5-2D mutants and six clusters among Moussa local mutants. Early maturity and high foliage were induced traits in Cluster 3 of KVX 396-4-5-2D mutants while high hundred-seed weight was induced in Cluster 6 of Moussa local mutants.
文摘The experiments were conducted to determine suitable sowing time in order to achieve high plant biomass and sugar content of sweet sorghum for bioethanol manufacture. The results showed that germination rate reached > 80% in all trial times (p > 0.05). The growth and development speed of sweet sorghum reduced when seeds were sowed in August and was significantly different from other sowing times (p < 0.05). Sowing from March to June obtained the highest plant height during all growth and development stages. Lodging and diseases observed in all periods of sowing, and planting began in July and August had lower percentage. In contrast, the productivity of fresh weight (1310.4 g/whole plant), sugar content (14.9% Brix), biomass yield (122.4 tons/ha) and theoretical converted ethanol yield (5 tons/ha) were the highest when sweet sorghum planted from March to June. It was observed that sowing sweet sorghum in four periods of month from March to June had the desirable biomass for bioethanol production.
文摘Human society locally and globally needs to better understand and respond to ever-more complex, interwoven problems: environmental degradation;climate instability;persistent poverty;disparities in human health;growing income/wealth inequality;economies and infrastructures vulnerable to climate shock;and mounting socio-political unrest. Cities are where most people live, urbanization is a strong upward global trend, and cities bring all these problems into sharp, compelling focus. Since outcomes stem from processes and systems, we argue transformative changes depend on re-imagining the Urban Design, Urban Planning and Urban Development Practice (UD/UP/UDP) process. While there has been insufficient attention to process innovation— with technological aspects tending to dominate UD/UP/UDP work—emerging systems views of cities, and disenchantment with existing modes are enabling. We propose an empirically based integrative frame to tackle recognized conundrums, and inform an adaptive UD/UP/UDP process—from concept through design, assessment, planning, implementation, project functioning and monitoring. The frame contemplates six domains (6-D): 1) Project ethos, concept, and framing;2) sectors, topics, and issues;3) Varying spatial and temporal scales;4) Stakeholder interests, relationships and capacities;5) Knowledge types, modes and methods;and 6) Socio-technical capacities and networks. The frame, process and outcomes constitute a socio-technical enterprise (STE) approach to UD/UP/UDP work, with implications for education, training, and professional practice. We highlight the pivotal role Integrators and Universities play, and the scalability of STE knowledge/capacity networks. The case of Greater Mexico City/Central Mexico Urban Region illustrates the utility of the approach in a hyper-complex, climate-change vulnerable regional context.
文摘Mining projects are among the most impactful development projects, and the most controversial. The Conga Mining Project, proposed by the U.S. based Newmont Mining Corporation, in partnership with Minas Buenaventura, was slated for the Cajamarca region of Peru. Since the Environmental Impact Assessment (EIA) was completed in 2010, controversy has escalated: public protests have precipitated a political crisis for President Humala, with several ministers resigning. The proposed project would have been made located approximately 73 km northeast of the city of Cajamarca, in the northern Peruvian Andes, in the district of Sorochuco, within an area defined by four major lakes, headwaters of rivers, and wetlands. Despite findings of “no significant impact” by the 2010 EIA, the project is currently postponed indefinitely due to the public backlash, international attention, and questions of integrity surrounding environmental and social concerns. We use the Conga Mining case to interrogate business-as-usual (BAU) design, assessment, planning, implementation and monitoring practices for extractive development in Peru, and suggest alternatives. Our analysis is based on an integrative framework that is empirically based (previously developed by the authors), one with a greater likelihood of improving sustainable development and the equity of positive and negative impacts among stakeholders. Suggestions are tailored to the setting: we pay special attention to the climate-change and socio-political contexts of Peru. We seek to exploit a shifting political landscape that is resisting BAU and countering the systematic disenfranchisement of vulnerable populations by extractive resource industries. These appear to be enabling conditions to promote the adoption of a capacity building, socio-technical enterprise approach to framing and designing sustainable development projects in Peru, with implications beyond.
文摘A new extractive boom looms over Bolivia, home to roughly a third of the world's lithium reserves. Since previous mining booms have not put the country on a sustainable development path, this paper briefly outlines the initial results of a research on policy options to break away with the past. The paper first assesses the relationship between resource dependence and sustainable development by looking at the evolution of genuine savings in Bolivia and neighbouring, resource-rich countries. It then discusses Bolivia's potential position on the world's lithium market and examines the institutional variables that shape perceptions, expectations and policy options at national and local levels. Notwithstanding major technological challenges, the paper concludes that further research should shed light on how inclusive processes can be nurtured in rentier states, and how far specific institutional reforms can contribute to turning the looming lithium boom into sustainable outcomes in the Bolivian case.
文摘There is no doubt that international scientific collaboration has increased in recent years in terms of both volume and importance.The Royal Society of Chemistry(RSC) and our partners in China are continuously strengthening links with the chemical sciences community around the world through a number of initiatives.
基金supported by the National Natural Science Foundation of China(No.22071133)the China Postdoctoral Science Foundation(No.2021M691763)+1 种基金the Tsinghua-Foshan Innovation Special Fund(TFISF),China(No.2020THFS0130)the Fund of the Tsinghua University-China Petrochemical Corporation Joint Institute for Green Chemical Engineering(No.421120).
文摘With the increasing scale of energy storage,it is urgently demanding for further advancements on battery technologies in terms of energy density,cost,cycle life and safety.The development of lithium-ion batteries(LIBs)not only relies on electrodes,but also the functional electrolyte systems to achieve controllable formation of solid electrolyte interphase and high ionic conductivity.In order to satisfy the needs of higher energy density,high-voltage(>4.3 V)cathodes such as Li-rich layered compounds,olivine LiNiPO_(4),spinel LiNi_(0.5)Mn_(1.5)O_(4) have been extensively studied.However,high-voltage cathodebased LIBs fade rapidly mainly owing to the anodic decomposition of electrolytes,gradually thickening of interfacial passivation layer and vast irreversible capacity loss,hence encountering huge obstacle toward practical applications.To tackle this roadblock,substantial progress has been made toward oxidation-resistant electrolytes to block its side reaction with high-voltage cathodes.In this review,we discuss degradation mechanisms of electrolytes at electrolyte/cathode interface and ideal requirements of electrolytes for high-voltage cathode,as well as summarize recent advances of oxidation-resistant electrolyte optimization mainly from solvents and additives.With these insights,it is anticipated that development of liquid electrolyte tolerable to high-voltage cathode will boost the large-scale practical applications of high-voltage cathode-based LIBs.
基金study was supported by the Open Project of Key Laboratory of Biology and Genetic Improvement of Oil Crops,Ministry of Agriculture and Rural Affairs,China(KF2020004,KF2022002)the Agricultural Science and Technology Innovation Project of the Chinese Academy of Agricultural Sciences(CAAS-ASTIP-2016-OCRI)+3 种基金the Key Research Projects of Hubei Province,China(2020BBA045,2020BHB028)the Science and Technology Innovation Project of Hubei Province,China(2021-620-000-001-035)the China Agriculture Research System of MOF and MARA(CARS-14)the Fundamental Research Funds for Central Non-profit Scientific Institution,China(Y2022XK11).
文摘Sesame(Sesamum indicum L.)is a significantly lucrative cash crop for millions of small-holder farmers.Its seeds are an important source of a highly appreciated vegetable oil globally and two clinically essential antioxidant lignans,sesamin and sesamolin.Accordingly,many countries import millions of tons of sesame seed every year.The demand for lignan-rich sesame seeds has been increasing in recent years due to the continuous discovery of several pharmacological attributes of sesamin and sesamolin.To meet this demand,the sesame breeder’s primary objective is to release sesame cultivars that are enriched in oil and lignans.Thus,it is necessary to summarize the information related to the sesamin and sesamolin contents in sesame in order to promote the joint efforts of specialized research teams on this important oilseed crop.In this article,we present the current knowledge on the sesamin and sesamolin contents in S.indicum L.with respect to the updated biosynthesis pathway,associated markers,governing loci,available variability in sesame germplasm,the in planta potential roles of these compounds in sesame,and the newly discovered pharmacological attributes.In addition,we propose and discuss some required studies that might facilitate genomics-assisted breeding of high lignan content sesame varieties.
文摘New methods in landscape ecology to study the link between landscape heterogeneity and landscape functionality are needed. Heterogeneity is a basic characteristic of landscape, and landscape function is the capacity to change the structural heterogeneity of a landscape system. In most developed countries the industrialisation of agriculture has in general resulted in a change of agricultural landscapes from a small-grained heterogeneous pattern towards more monotonous and monofunctional landscapes. During the 1990's this trends seems to have changed due to a diversification of rural land use and new trends in urbanisation. Weather these phases of landscape development should be expected in developing countries is a totally open question. Dealing with the study of multifunctionality of landscapes it is proposed to distinguish between ecological functionality of landscape ecosystems, functionality pertaining to land use and social functionality. Further, the relation between function, space and scale is important by the determination of spatial and time segregation as well as spatial and time integration of multifunctionality in landscapes.
文摘Urban green spaces have been arisen growing concern responded to the social and environmental costs of urban sprawl. A wide range of planning and policies has been and/or will be designed to protect urban green spaces and optimize their spatial pattern. A better design or planning of urban green space can make a major contribution to quality of environment and urban life, and furthermore can decide whether we can have a sustainable development in the urban area. Information about the status quo of urban green spaces can help planners design more effectively. However, how to quantify and capture such information will be the essential question we face. In this paper, to quantify the urban green space, a new method comprising gradient analysis, landscape metrics and GIS was developed through a case of Jinan City. The results demonstrate: 1) the gradient analysis is a valid and reliable instrument to quantify the urban green space spatial pattern precisely; 2) using moving window, explicit landscape metrics were spatially realized. Compared with quantifying metrics in the entire landscape, it would be better to link pattern with process and establish an important basis for analyzing the ecological and socioeconomic functions of green spaces.
文摘This study was conducted to investigate the dissipation pattern and runoff of herbicides to the river basin from the paddy fields. Pesticide paddy field model(PADDY) was applied to predict herbicide concentration in paddy fields. A field study was conducted in a paddy farm of Higashi Hiroshima City, Hiroshima Prefecture, Japan in the year of 2003 paddy season. The herbicides were mefenacet, thiobencarb, and bensulfuron methyl. The sample water was analyzed by using gas chromatography and HPLC after solid phase extraction. Predicted dissipation rate of thiobencarb in paddy water was higher(DT_ 50 = 4 36) than that measured, with a lower k value(-0 069). Two weeks after application no thiobencarb was detected in the drainage channel and down stream. In the down stream, thiobencarb was detected until 3 d after application, with a range of 0 02% to 0 08% of applied herbicide. The predicted dissipation rate(k) and half-life(DT_ 50 ) of mefenacet was not significantly different from that of measured. In the drainage channel, upstream and downstream mefenacet was found during the whole study period. In downstream, the maximum concentration of mefenacet was present 0 61% of applied in the paddy field on 3DAH. The dissipation rate(k) of BSM varied from -0 0860 to -0 1059 to with half-life(DT_ 50 ) 3 5 and 2 84 d. In upstream water, no BSM was detected except trace amounts(0 01 μg/L) at 3 d after application. However, in the drainage channel 8%, 6% and 1 58% of applied BSM was present at 0, 1 and 3 d after application respectively. In the down stream, the highest concentration was 1 06%, shortly after application.
文摘The aim of this paper is to clarify the pattern and process of changes of landscape in riverside open spaces in urbanized area.The area between the old banks of the Furukawa River in Hiroshima City was examined in this research.The land use maps of the study area were drawn at seven different times were analyzed,and the number,sizes and perimeters of all patches of all land use types were measured.In these areas,temporal patterns of land use change over the past 30 years were divided to three stages:19661976,19761988 and 19881997.As a result of human disturbance,the riparian forest patches in urbanized areas have decreased in average size and have also become longer and narrower.
基金supported by the Chugoku Regional Development Bureau of the Ministry of Land,Infrastructure,Transport and Tourism,Japan
文摘In this study,our recent work on advanced ion chromatographic methods for the simultaneous determination of inorganic ionic species such as common anions(SO2-4,Cl-and NO-3) and cations(Na+,NH+4,K+,Mg2+,and Ca2+),nutrients(phosphate and silicate) and hydrogen ion/alkalinity are summarized first.Then,the applications using these methods for monitoring environmental water quality are also presented.For the determination of common anions and cations with nutrients,the separation was successfully performed by a polymethacrylate-based weakly acidic cation-exchange column of TSKgel Super IC-A/C(Tosoh,150 mm×6.0 mm i.d.) and a mixture solution of 100 mmol/L ascorbic acid and 4 mmol/L 18-crown-6 as acidic eluent with dual detection of conductivity and spectrophotometry.For the determination of hydrogen ion/alkalinity,the separation was conducted by TSKgel ODS-100Z column(Tosoh,150 mm×4.5 mm i.d.) modified with lithium dodecylsulfate and an eluent of 40 mmol/L LiCl/0.1 mmol/L lithium dodecylsulfate/0.05 mmol/L H2SO4 with conductivity detector.The differences of ion concentration between untreated and treated wastewater showed the variation of ionic species during biological treatment process in a sewage treatment plant.Occurrence and distribution of water-quality conditions were related to the bioavailability and human activity in watershed.From these results,our advanced ion chromatographic methods have contributed significantly for water quality monitoring of environmental waters.
基金Under the auspices of National Natural Science Foundation of China (No. 41101033)Program of International S & T Cooperation (No. 2010DFA92400)+1 种基金Beijing Municipal Natural Science Foundation (No. 8082010)Non-profit Industry Financial Program of the Ministry of Water Resources (No. 200901091)
文摘It is important to understand how land use change impacts groundwater recharge, especially for regions that are undergoing rapid urbanization and there is limited surface water. In this study, the hydrological processes and re- charge ability of various land use types in Guishui River Basin, China (in Beijing Municipality) were analyzed. The impact of land use change was investigated based on water balance modeling, WetSpass and GIS. The results indicate that groundwater recharge accounts for only 21.16% of the precipitation, while 72.54% is lost in the form of evapotranspiration. The annual-lumped groundwater recharge rate decreases in the order of cropland, grassland, urban land, and forest. Land use change has resulted in a decrease of 4 x 106 m3 of yearly groundwater recharge in the study area, with a spatially averaged rate of 100.48 mm/yr and 98.41 mm/yr in 1980 and 2005, respectively. This variation has primarily come from an increase of urban area and rural settlements, as well as a decrease of cropland.