Taking a class of linear(4+1)-dimensional partial differential equations as examples, we would like to show that there exist lump solutions and interaction solutions in(4+1)-dimensions. We will compute abundant lump s...Taking a class of linear(4+1)-dimensional partial differential equations as examples, we would like to show that there exist lump solutions and interaction solutions in(4+1)-dimensions. We will compute abundant lump solutions and interaction solutions to the considered linear(4+1)-dimensional partial differential equations via symbolic computations,and plot three specific solutions with Maple plot tools, which supplements the existing literature on lump, rogue wave and breather solutions and their interaction solutions in soliton theory.展开更多
Based on a 4 x 4 matrix spectral problem, an AKNS soliton hierarchy with six potentials is generated. Associated with this spectral problem, a kind of Riemann-Hilbert problems is formulated for a six-component system ...Based on a 4 x 4 matrix spectral problem, an AKNS soliton hierarchy with six potentials is generated. Associated with this spectral problem, a kind of Riemann-Hilbert problems is formulated for a six-component system of mKdV equations in the resulting AKNS hierarchy. Soliton solutions to the considered system of coupled mKdV equations are computed, through a reduced Riemann-Hilbert problem where an identity jump matrix is taken.展开更多
We classify a generalized coupled singular Emden-Fowler type system +a(t)vn=0,v+b(t)um=0 with respect to the standard first-order Lagrangian according to the Noether point symmetries which it admits.First integr...We classify a generalized coupled singular Emden-Fowler type system +a(t)vn=0,v+b(t)um=0 with respect to the standard first-order Lagrangian according to the Noether point symmetries which it admits.First integrals of the various cases which admit Noether point symmetries are then obtained.This system was discussed in the literature from the view-point of existence and uniqueness of positive solutions.展开更多
Having realized various significant roles that higher-dimensional nonlinear partial differ-ential equations(NLPDEs)play in engineering,we analytically investigate in this paper,a higher-dimensional soliton equation,wi...Having realized various significant roles that higher-dimensional nonlinear partial differ-ential equations(NLPDEs)play in engineering,we analytically investigate in this paper,a higher-dimensional soliton equation,with applications particularly in ocean physics and mechatronics(electrical electronics and mechanical)engineering.Infinitesimal generators of Lie point symmetries of the equation are computed using Lie group analysis of differen-tial equations.In addition,we construct commutation as well as Lie adjoint representation tables for the nine-dimensional Lie algebra achieved.Further,a one-dimensional optimal system of Lie subalgebras is also presented for the soliton equation.This consequently enables us to generate abundant group-invariant solutions through the reduction of the understudy equation into various ordinary differential equations(ODEs).On solving the achieved nonlinear differential equations,we secure various solitonic solutions.In conse-quence,these solutions containing diverse mathematical functions furnish copious shapes of dynamical wave structures,ranging from periodic,kink and kink-shaped nanopteron,soliton(bright and dark)to breather waves with extensive wave collisions depicted.We physically interpreted the resulting soliton solutions by imploring graphical depictions in three dimensions,two dimensions and density plots.Moreover,the gained group-invariant solutions involved several arbitrary functions,thus exhibiting rich physical structures.We also implore the power series technique to solve part of the complicated differential equa-tions and give valid comments on their results.Later,we outline some applications of our results in ocean physics and mechatronics engineering.展开更多
The nonlinear evolution equations have a wide range of applications,more precisely in physics,biology,chemistry and engineering fields.This domain serves as a point of interest to a large extent in the world’s mathem...The nonlinear evolution equations have a wide range of applications,more precisely in physics,biology,chemistry and engineering fields.This domain serves as a point of interest to a large extent in the world’s mathematical community.Thus,this paper purveys an analytical study of a generalized extended(2+1)-dimensional quantum Zakharov-Kuznetsov equation with power-law nonlinearity in oceanography and ocean engineering.The Lie group theory of differential equations is utilized to compute an optimal system of one dimension for the Lie algebra of the model.We further reduce the equation using the subalgebras obtained.Besides,more general solutions of the underlying equation are secured for some special cases of n with the use of extended Jacobi function expansion technique.Consequently,we secure new bounded and unbounded solutions of interest for the equation in various solitonic structures including bright,dark,periodic(cnoidal and snoidal),compact-type as well as singular solitons.The applications of cnoidal and snoidal waves of the model in oceanography and ocean engineering for the first time,are outlined with suitable diagrams.This can be of interest to oceanographers and ocean engineers for future analysis.Furthermore,to visualize the dynamics of the results found,we present the graphic display of each of the solutions.Conclusively,we construct conservation laws of the understudy equation via the application of Noether’s theorem.展开更多
A modified power-law fluid of second grade is considered. The model is a combination of power-law and second grade fluid in which the fluid may exhibit normal stresses, shear thinning or shear thickening behaviors. Th...A modified power-law fluid of second grade is considered. The model is a combination of power-law and second grade fluid in which the fluid may exhibit normal stresses, shear thinning or shear thickening behaviors. The equations of motion are derived for two dimensional incompressible flows, and from which the boundary layer equations are derived. Symmetries of the boundary layer equations are found by using Lie group theory, and then group classification with respect to power-law index is performed. By using one of the symmetries, namely the scaling symmetry, the partial differential system is transformed into an ordinary differential system, which is numerically integrated under the classical boundary layer conditions. Effects of power-law index and second grade coefficient on the boundary layers are shown and solutions are contrasted with the usual second grade fluid solutions.展开更多
This paper presents analytical studies carried out explicitly on a higher-dimensional generalized Zakharov–Kuznetsov equation with dual power-law nonlinearity arising in engineering and nonlinear science.We obtain an...This paper presents analytical studies carried out explicitly on a higher-dimensional generalized Zakharov–Kuznetsov equation with dual power-law nonlinearity arising in engineering and nonlinear science.We obtain analytic solutions for the underlying equation via Lie group approach as well as direct integration method.Moreover,we engage the extended Jacobi elliptic cosine and sine amplitude functions expansion technique to seek more exact travelling wave solutions of the equation for some particular cases.Consequently,we secure,singular and nonsingular(periodic)soliton solutions,cnoidal,snoidal as well as dnoidal wave solutions.Besides,we depict the dynamics of the solutions using suitable graphs.The application of obtained results in various fields of sciences and engineering are presented.In conclusion,we construct conserved currents of the aforementioned equation via Noether’s theorem(with Helmholtz criteria)and standard multiplier technique through the homotopy formula.展开更多
Many physical systems can be successfully modelled using equations that admit the soliton solutions.In addition,equations with soliton solutions have a significant mathematical structure.In this paper,we study and ana...Many physical systems can be successfully modelled using equations that admit the soliton solutions.In addition,equations with soliton solutions have a significant mathematical structure.In this paper,we study and analyze a three-dimensional soliton equation,which has applications in plasma physics and other nonlinear sciences such as fluid mechanics,atomic physics,biophysics,nonlinear optics,classical and quantum fields theories.Indeed,solitons and solitary waves have been observed in numerous situations and often dominate long-time behaviour.We perform symmetry reductions of the equation via the use of Lie group theory and then obtain analytic solutions through this technique for the very first time.Direct integration of the resulting ordinary differential equation is done which gives new analytic travelling wave solutions that consist of rational function,elliptic functions,elementary trigonometric and hyperbolic functions solutions of the equation.Besides,various solitonic solutions are secured with the use of a polynomial complete discriminant system and elementary integral technique.These solutions comprise dark soliton,doubly-periodic soliton,trigonometric soliton,explosive/blowup and singular solitons.We further exhibit the dynamics of the solutions with pictorial representations and discuss them.In conclusion,we contemplate conserved quantities for the equation under study via the standard multiplier approach in conjunction with the homotopy integral formula.We state here categorically and emphatically that all results found in this study as far as we know have not been earlier obtained and so are new.展开更多
A (2 + 1)-dimensional generalized Bogoyavlensky-Konopelchenko equation that possesses a Hirota bilinear form is considered. Starting with its Hirota bilinear form, a class of explicit lump solutions is computed thr...A (2 + 1)-dimensional generalized Bogoyavlensky-Konopelchenko equation that possesses a Hirota bilinear form is considered. Starting with its Hirota bilinear form, a class of explicit lump solutions is computed through conducting symbolic computations with Maple, and a few plots of a specific presented lump solution are made to shed light on the characteristics of lumps. The result provides a new example of (2 + 1)-dimensional nonlinear partial differential equations which possess lump solutions.展开更多
基金supported in part by NSFC(11301331,11371086,11571079 and 51771083)NSF under the grant DMS-1664561+4 种基金Shanghai Pujiang Program(14PJD007)the Natural Science Foundation of Shanghai(14ZR1403500)Natural Science Fund for Colleges and Universities of Jiangsu Province under the grant 17KJB110020Emphasis Foundation of Special Science Research on Subject Frontiers of CUMT under Grant No.2017XKZD11the Distinguished Professorships by Shanghai University of Electric Power,China and North-West University,South Africa
文摘Taking a class of linear(4+1)-dimensional partial differential equations as examples, we would like to show that there exist lump solutions and interaction solutions in(4+1)-dimensions. We will compute abundant lump solutions and interaction solutions to the considered linear(4+1)-dimensional partial differential equations via symbolic computations,and plot three specific solutions with Maple plot tools, which supplements the existing literature on lump, rogue wave and breather solutions and their interaction solutions in soliton theory.
基金supported in part by NSFC(11371326,11301331,and 11371086)NSF under the grant DMS-1664561+2 种基金the 111 project of China(B16002)the China state administration of foreign experts affairs system under the affiliation of North China Electric Power University,Natural Science Fund for Colleges and Universities of Jiangsu Province under the grant 17KJB110020the Distinguished Professorships by Shanghai University of Electric Power,China and North-West University,South Africa
文摘Based on a 4 x 4 matrix spectral problem, an AKNS soliton hierarchy with six potentials is generated. Associated with this spectral problem, a kind of Riemann-Hilbert problems is formulated for a six-component system of mKdV equations in the resulting AKNS hierarchy. Soliton solutions to the considered system of coupled mKdV equations are computed, through a reduced Riemann-Hilbert problem where an identity jump matrix is taken.
文摘We classify a generalized coupled singular Emden-Fowler type system +a(t)vn=0,v+b(t)um=0 with respect to the standard first-order Lagrangian according to the Noether point symmetries which it admits.First integrals of the various cases which admit Noether point symmetries are then obtained.This system was discussed in the literature from the view-point of existence and uniqueness of positive solutions.
基金the North-West University,Mafikeng campus for its continued support.
文摘Having realized various significant roles that higher-dimensional nonlinear partial differ-ential equations(NLPDEs)play in engineering,we analytically investigate in this paper,a higher-dimensional soliton equation,with applications particularly in ocean physics and mechatronics(electrical electronics and mechanical)engineering.Infinitesimal generators of Lie point symmetries of the equation are computed using Lie group analysis of differen-tial equations.In addition,we construct commutation as well as Lie adjoint representation tables for the nine-dimensional Lie algebra achieved.Further,a one-dimensional optimal system of Lie subalgebras is also presented for the soliton equation.This consequently enables us to generate abundant group-invariant solutions through the reduction of the understudy equation into various ordinary differential equations(ODEs).On solving the achieved nonlinear differential equations,we secure various solitonic solutions.In conse-quence,these solutions containing diverse mathematical functions furnish copious shapes of dynamical wave structures,ranging from periodic,kink and kink-shaped nanopteron,soliton(bright and dark)to breather waves with extensive wave collisions depicted.We physically interpreted the resulting soliton solutions by imploring graphical depictions in three dimensions,two dimensions and density plots.Moreover,the gained group-invariant solutions involved several arbitrary functions,thus exhibiting rich physical structures.We also implore the power series technique to solve part of the complicated differential equa-tions and give valid comments on their results.Later,we outline some applications of our results in ocean physics and mechatronics engineering.
文摘The nonlinear evolution equations have a wide range of applications,more precisely in physics,biology,chemistry and engineering fields.This domain serves as a point of interest to a large extent in the world’s mathematical community.Thus,this paper purveys an analytical study of a generalized extended(2+1)-dimensional quantum Zakharov-Kuznetsov equation with power-law nonlinearity in oceanography and ocean engineering.The Lie group theory of differential equations is utilized to compute an optimal system of one dimension for the Lie algebra of the model.We further reduce the equation using the subalgebras obtained.Besides,more general solutions of the underlying equation are secured for some special cases of n with the use of extended Jacobi function expansion technique.Consequently,we secure new bounded and unbounded solutions of interest for the equation in various solitonic structures including bright,dark,periodic(cnoidal and snoidal),compact-type as well as singular solitons.The applications of cnoidal and snoidal waves of the model in oceanography and ocean engineering for the first time,are outlined with suitable diagrams.This can be of interest to oceanographers and ocean engineers for future analysis.Furthermore,to visualize the dynamics of the results found,we present the graphic display of each of the solutions.Conclusively,we construct conservation laws of the understudy equation via the application of Noether’s theorem.
文摘A modified power-law fluid of second grade is considered. The model is a combination of power-law and second grade fluid in which the fluid may exhibit normal stresses, shear thinning or shear thickening behaviors. The equations of motion are derived for two dimensional incompressible flows, and from which the boundary layer equations are derived. Symmetries of the boundary layer equations are found by using Lie group theory, and then group classification with respect to power-law index is performed. By using one of the symmetries, namely the scaling symmetry, the partial differential system is transformed into an ordinary differential system, which is numerically integrated under the classical boundary layer conditions. Effects of power-law index and second grade coefficient on the boundary layers are shown and solutions are contrasted with the usual second grade fluid solutions.
文摘This paper presents analytical studies carried out explicitly on a higher-dimensional generalized Zakharov–Kuznetsov equation with dual power-law nonlinearity arising in engineering and nonlinear science.We obtain analytic solutions for the underlying equation via Lie group approach as well as direct integration method.Moreover,we engage the extended Jacobi elliptic cosine and sine amplitude functions expansion technique to seek more exact travelling wave solutions of the equation for some particular cases.Consequently,we secure,singular and nonsingular(periodic)soliton solutions,cnoidal,snoidal as well as dnoidal wave solutions.Besides,we depict the dynamics of the solutions using suitable graphs.The application of obtained results in various fields of sciences and engineering are presented.In conclusion,we construct conserved currents of the aforementioned equation via Noether’s theorem(with Helmholtz criteria)and standard multiplier technique through the homotopy formula.
文摘Many physical systems can be successfully modelled using equations that admit the soliton solutions.In addition,equations with soliton solutions have a significant mathematical structure.In this paper,we study and analyze a three-dimensional soliton equation,which has applications in plasma physics and other nonlinear sciences such as fluid mechanics,atomic physics,biophysics,nonlinear optics,classical and quantum fields theories.Indeed,solitons and solitary waves have been observed in numerous situations and often dominate long-time behaviour.We perform symmetry reductions of the equation via the use of Lie group theory and then obtain analytic solutions through this technique for the very first time.Direct integration of the resulting ordinary differential equation is done which gives new analytic travelling wave solutions that consist of rational function,elliptic functions,elementary trigonometric and hyperbolic functions solutions of the equation.Besides,various solitonic solutions are secured with the use of a polynomial complete discriminant system and elementary integral technique.These solutions comprise dark soliton,doubly-periodic soliton,trigonometric soliton,explosive/blowup and singular solitons.We further exhibit the dynamics of the solutions with pictorial representations and discuss them.In conclusion,we contemplate conserved quantities for the equation under study via the standard multiplier approach in conjunction with the homotopy integral formula.We state here categorically and emphatically that all results found in this study as far as we know have not been earlier obtained and so are new.
基金Acknowledgements The work was supported in part by the National Natural Science Foundation of China (Grant Nos. 11301454, 11301331, 11371086, 11571079, 51771083), the NSF under the grant DMS-1664561, the Jiangsu Qing Lan Project for Excellent Young Teachers in University (2014), the Six Talent Peaks Project in Jiangsu Province (2016-JY-081), the Natural Science Foundation for Colleges and Universities in Jiangsu Province (17KJB110020), the Natural Science Foundation of Jiangsu Province (Grant No. BK20151160), the Emphasis Foundation of Special Science Research on Subject Frontiers of CUMT under Grant No. 2017XKZDll, and the Distinguished Professorships by Shanghai University of Electric Power and Shanghai Polytechnic University.
文摘A (2 + 1)-dimensional generalized Bogoyavlensky-Konopelchenko equation that possesses a Hirota bilinear form is considered. Starting with its Hirota bilinear form, a class of explicit lump solutions is computed through conducting symbolic computations with Maple, and a few plots of a specific presented lump solution are made to shed light on the characteristics of lumps. The result provides a new example of (2 + 1)-dimensional nonlinear partial differential equations which possess lump solutions.